精英家教网 > 高中数学 > 题目详情
14.如图,某污水处理厂要在一个矩形ABCD的池底水平铺设污水净化管道(直角△EFG,E是直角顶点)来处理污水,管道越长,污水净化效果越好,设计要求管道的接口E是AB的中点,F、G分别落在AD、BC上,且AB=20m,$AD=10\sqrt{3}m$,设∠GEB=θ.
(1)试将污水管道的长度l表示成θ的函数,并写出定义域;
(2)当θ为何值时,污水净化效果最好,并求此时管道的长度.

分析 (1)利用三角函数定义表示出EG和FE的长度,利用勾股定理可得长度FG.三边之和可得污水管道的长度l.
(2)根据(1)中的关系式利用三角函数公式化简,利用三角函数的有界限可得l的最大值,即污水净化效果最好.

解答 解:(1)由题意,∠GEB=θ.∠GEF=90°.则∠AEF=90°-θ,
E是AB的中点,AB=20m,$AD=10\sqrt{3}m$,
∴EG=$\frac{10}{cosθ}$,EF=$\frac{10}{cos(90°-θ)}$=$\frac{10}{sinθ}$.
FG=$\sqrt{E{G}^{2}+E{F}^{2}}$=$\frac{10}{cosθsinθ}$
则$l=\frac{10}{sinθ}+\frac{10}{cosθ}+\frac{10}{sinθcosθ}$
定义域:$(θ∈[\frac{π}{6},\frac{π}{3}])$;
(2)由(1)可知则$l=\frac{10}{sinθ}+\frac{10}{cosθ}+\frac{10}{sinθcosθ}$,$(θ∈[\frac{π}{6},\frac{π}{3}])$;
化简可得l=$\frac{10(sinθ+cosθ)+10}{sinθcosθ}$,
令t=sinθ+cosθ=$\sqrt{2}$sin($θ+\frac{π}{4}$).
∵$(θ∈[\frac{π}{6},\frac{π}{3}])$;
∴$θ+\frac{π}{4}$∈[$\frac{5π}{12}$,$\frac{7π}{12}$],
可得sin($θ+\frac{π}{4}$)∈[$\frac{\sqrt{6}+\sqrt{2}}{4}$,1]
则:t∈[$\frac{\sqrt{3}+1}{2}$,$\sqrt{2}$]
可得:sinθcosθ=$\frac{{t}^{2}-1}{2}$,且t≠1.
那么:l=$\frac{10+10t}{\frac{{t}^{2}-1}{2}}$=$\frac{20(1+t)}{{t}^{2}-1}$=$\frac{20}{t-1}$.
当t=$\frac{\sqrt{3}+1}{2}$时,长度l取得最大值为$20\sqrt{3}+20$;
此时:t=$\sqrt{2}$sin($θ+\frac{π}{4}$)=$\frac{\sqrt{3}+1}{2}$,即$θ+\frac{π}{4}$=$\frac{5π}{12}$或$\frac{7π}{12}$
∴$θ=\frac{π}{6}$或$\frac{π}{3}$,
故得$θ=\frac{π}{6}$或$\frac{π}{3}$时,污水净化效果最好,此时管道的长度为$20\sqrt{3}+20$;

点评 本题主要考查对三角函数的应用在实际中的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知$a={log_2}3,b={2^{-\frac{1}{3}}},c={log_{\frac{1}{3}}}\frac{1}{30}$,则a、b、c的大小关系是(  )
A.c>a>bB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若点(-4,-2)在直线2x-y+m=0的下方,则m的取值范围是m>6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{\begin{array}{l}{2x-y+4≥0}\\{x-y+3≥0}\\{x≤0}\\{y≥0}\end{array}\right.$,则目标函数z=-3y-2x的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.5051-1被7除后的余数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某人午觉醒来,发现表停了,他打开收音机,想听电台报时,则他等待时间大于10分钟的概率为(  )
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{1}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在数列{an}中,${a_1}=\frac{3}{2},{a_{n+1}}=a_n^2-2{a_n}+2$.,n∈N*
(1)求证:1<an+1<an<2;
(2)求证:$\frac{6}{{{2^{n-1}}+3}}≤{a_n}≤\frac{{{2^{n-1}}+2}}{{{2^{n-1}}+1}}$;
(3)求证:n<sn<n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{\begin{array}{l}{e^{mx}}(x≥0)\\ \frac{1}{m}ln(-x)(x<0)\end{array}\right.$(其中m>0,e为自然对数的底数)的图象为曲线M,若曲线M上存在关于直线x=0对称的点,则实数m的取值范围是(  )
A.$m≥\frac{1}{e}$B.$0<m≤\frac{1}{e}$C.$m≥\frac{1}{e^2}$D.$0<m≤\frac{1}{e^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C的圆心为(-1,-3),且它与x轴相切.
(1)求圆的方程;
(2)若圆C被直线l:y=kx截得的弦长为$2\sqrt{7}$,求k的值.

查看答案和解析>>

同步练习册答案