精英家教网 > 高中数学 > 题目详情
4.已知$a={log_2}3,b={2^{-\frac{1}{3}}},c={log_{\frac{1}{3}}}\frac{1}{30}$,则a、b、c的大小关系是(  )
A.c>a>bB.a>c>bC.a>b>cD.c>b>a

分析 利用对数函数与指数函数的单调性即可得出.

解答 解:∵c=log330>log39=2,a=log23∈(1,2),b=${2}^{-\frac{1}{3}}$∈(0,1).
∴c>a>b.
故选:A.

点评 本题考查了对数函数与指数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若复数z满足(1+2i)z=1-i,则复数z的虚部为(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$iD.-$\frac{3}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.袋子中有大小、质地相同的红球、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得10分,摸出黑球,得5分,则3次摸球所得总分至少是25分的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在二项式(x-2)5的展开式中,含x3项的系数为(  )
A.-80B.-40C.40D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项的和为Sn,已知a1=$\frac{3}{2}$,an+1=$\frac{{a}_{n}^{3}}{2{a}_{n}^{2}-3{a}_{n}+2}$,其中n∈N*
(1)证明:an<2;
(2)证明:an<an+1
(3)证明:2n-$\frac{4}{3}$≤Sn≤2n-1+($\frac{1}{2}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设等差数列{an}的前n项和为Sn,若a4,a6是方程x2-18x+p=0的两根,那么S9=(  )
A.9B.81C.5D.45

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sin(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求f($\frac{π}{8}$)的值;
(2)函数h(x)=af$(\frac{x}{2})-{sin^2}$x,x∈[$\frac{π}{6},\frac{2π}{3}$],有最小值为-1,求a的值和函数h(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设xy>0,则$({x^2}+\frac{4}{y^2})({y^2}+\frac{1}{x^2})$的最小值为(  )
A.-9B.9C.10D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,某污水处理厂要在一个矩形ABCD的池底水平铺设污水净化管道(直角△EFG,E是直角顶点)来处理污水,管道越长,污水净化效果越好,设计要求管道的接口E是AB的中点,F、G分别落在AD、BC上,且AB=20m,$AD=10\sqrt{3}m$,设∠GEB=θ.
(1)试将污水管道的长度l表示成θ的函数,并写出定义域;
(2)当θ为何值时,污水净化效果最好,并求此时管道的长度.

查看答案和解析>>

同步练习册答案