精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=sin(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求f($\frac{π}{8}$)的值;
(2)函数h(x)=af$(\frac{x}{2})-{sin^2}$x,x∈[$\frac{π}{6},\frac{2π}{3}$],有最小值为-1,求a的值和函数h(x)的最大值.

分析 (1)根据对称性求得φ,利用周期得出ω,得出f(x)的解析式,再计算f($\frac{π}{8}$);
(2)求出h(x)解析式,令t=cosx,得出关于t的二次函数,根据对称轴讨论函数单调性,从而求出a的值.

解答 解:(1)∵f(x)=sin(ωx+ϕ)为偶函数,且0<φ<π,∴φ=$\frac{π}{2}$;
∵函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$,
∴f(x)的周期T=$\frac{2π}{ω}=2×\frac{π}{2}$,∴ω=2,故f(x)=cos2x;
∴$f(\frac{π}{8})=cos\frac{π}{4}=\frac{{\sqrt{2}}}{2}$.      
(2)$h(x)=af(\frac{x}{2})-{sin^2}x=acosx-{sin^2}x={cos^2}x+acosx-1={(cosx+\frac{a}{2})^2}-\frac{a^2}{4}-1$
令t=cosx,$g(t)={(t+\frac{a}{2})^2}-\frac{a^2}{4}-1,t∈[-\frac{1}{2},\frac{{\sqrt{3}}}{2}]$
若$-\frac{a}{2}≤-\frac{1}{2}$时,即a≥1,$g{(t)_{min}}=g(-\frac{1}{2})=-\frac{a}{2}-\frac{3}{4}=-1$,得$a=\frac{1}{2}$(舍去);
若$-\frac{1}{2}<-\frac{a}{2}<\frac{{\sqrt{3}}}{2}$时,即-$\sqrt{3}<a<1$,$g{(t)_{min}}=g(-\frac{a}{2})=-\frac{a^2}{4}-1=-1$,得a=0,
此时$f(-\frac{1}{2})=-\frac{3}{4},f(\frac{{\sqrt{3}}}{2})=-\frac{1}{4}$,∴$f{(x)_{max}}=-\frac{1}{4}$.
若$-\frac{a}{2}≥\frac{{\sqrt{3}}}{2}$时,即$a≤-\sqrt{3}$,$g{(x)_{min}}=g(\frac{{\sqrt{3}}}{2})=\frac{{\sqrt{3}}}{2}a-\frac{1}{4}=-1$,得$a=-\frac{{\sqrt{3}}}{2}$(舍去)
综上,$a=0,f{(x)_{max}}=-\frac{1}{4}$.

点评 本题考查了三角函数的图象与性质,二次函数的性质,分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设z=$\frac{1}{1+i}$+i(i为虚数单位),则|z|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了调查某班级的作业完成情况,将该班级的52名学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知5号,18号,44号同学在样本中,那么样本中还有一位同学的编号应该是(  )
A.23B.27C.31D.33

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$a={log_2}3,b={2^{-\frac{1}{3}}},c={log_{\frac{1}{3}}}\frac{1}{30}$,则a、b、c的大小关系是(  )
A.c>a>bB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法正确的是(  )
A.若|$\vec a|>|\vec b|$,$\vec a>\vec b$B.若$|\vec a|=|\vec b|$,$\vec a=\vec b$
C.若$\vec a=\vec b$,则$\vec a∥\vec b$D.若$\vec a≠\vec b$,则$\vec a$与$\vec b$不是共线向量

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把8个相同的小球全部放入编号为1,2,3,4的四个盒中,则不同的放法数为(  )
A.35B.70C.165D.1860

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:
与教育有关与教育无关合计
301040
35540
合计651580
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若点(-4,-2)在直线2x-y+m=0的下方,则m的取值范围是m>6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在数列{an}中,${a_1}=\frac{3}{2},{a_{n+1}}=a_n^2-2{a_n}+2$.,n∈N*
(1)求证:1<an+1<an<2;
(2)求证:$\frac{6}{{{2^{n-1}}+3}}≤{a_n}≤\frac{{{2^{n-1}}+2}}{{{2^{n-1}}+1}}$;
(3)求证:n<sn<n+2.

查看答案和解析>>

同步练习册答案