8£®Îªµ÷²éÁ˽âijʡÊôʦ·¶´óѧʦ·¶Àà±ÏÒµÉú²Î¼Ó¹¤×÷ºó£¬´ÓÊµĹ¤×÷Óë½ÌÓýÊÇ·ñÓйصÄÇé¿ö£¬¸ÃÐ£Ëæ»úµ÷²éÁ˸ÃУ80λÐÔ±ð²»Í¬µÄ2016Äêʦ·¶Àà±ÏÒµ´óѧÉú£¬µÃµ½¾ßÌåÊý¾ÝÈç±í£º
Óë½ÌÓýÓйØÓë½ÌÓýÎ޹غϼÆ
ÄÐ301040
Ů35540
ºÏ¼Æ651580
£¨1£©ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý5%µÄǰÌáÏ£¬ÈÏΪ¡°Ê¦·¶Àà±ÏÒµÉú´ÓÊÂÓë½ÌÓýÓйصŤ×÷ÓëÐÔ±ðÓйء±£¿
£¨2£©ÇóÕâ80λʦ·¶Àà±ÏÒµÉú´ÓÊÂÓë½ÌÓýÓйع¤×÷µÄƵÂÊ£»
£¨3£©ÒÔ£¨2£©ÖÐµÄÆµÂÊ×÷Ϊ¸ÅÂÊ£®¸ÃУ½ü¼¸Äê±ÏÒµµÄ2000Ãûʦ·¶Àà´óѧÉúÖÐËæ»úѡȡ4Ãû£¬¼ÇÕâ4Ãû±ÏÒµÉú´ÓÊÂÓë½ÌÓýÓйصÄÈËÊýΪX£¬ÇóXµÄÊýѧÆÚÍûE£¨X£©£®
²Î¿¼¹«Ê½£ºk2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¨n=a+b+c+d£©£®
¸½±í£º
P£¨K2¡Ýk0£©0.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635

·ÖÎö £¨1£©¼ÆËã¹Û²âÖµk2£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÓÉͼ±íÖеÄÊý¾Ý¼ÆËãÕâ80λʦ·¶Àà±ÏÒµÉú´ÓÊÂÓë½ÌÓýÓйع¤×÷µÄƵÂÊ£»
£¨3£©ÓÉÌâÒâÖªX·þ´ÓB£¨4£¬$\frac{13}{16}$£©£¬¼ÆËã¾ùÖµE£¨X£©¼´¿É£®

½â´ð ½â£º£¨1£©¸ù¾ÝÁÐÁª±í¼ÆËã¹Û²âÖµ
K2=$\frac{80{¡Á£¨30¡Á5-35¡Á10£©}^{2}}{40¡Á40¡Á65¡Á15}$¡Ö2.0513£¬
ÒòΪK2£¼3.841£¬
ËùÒÔÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý5%µÄǰÌáÏ£¬
²»ÄÜÈÏΪ¡°Ê¦·¶Àà±ÏÒµÉú´ÓÊÂÓë½ÌÓýÓйصŤ×÷ÓëÐÔ±ðÓйء±£»
£¨2£©ÓÉͼ±íÖªÕâ80λʦ·¶Àà±ÏÒµÉú´ÓÊÂÓë½ÌÓýÓйع¤×÷µÄƵÂÊΪ
P=$\frac{65}{80}$=$\frac{13}{16}$£»
£¨3£©ÓÉÌâÒâÖªX·þ´ÓB£¨4£¬$\frac{13}{16}$£©£¬
ÔòE£¨X£©=np=4¡Á$\frac{13}{16}$=$\frac{13}{4}$£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéÔ­Àí¡¢¶þÏî·Ö²¼Áм°ÆäÊýѧÆÚÍûµÄÓ¦ÓÃÎÊÌ⣬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¼¯ºÏA={x|£¨x-5£©£¨x+1£©£¼0}£¬B={x|x2£¼9}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{x|-1£¼x£¼3}B£®{x|-3£¼x£¼5}C£®{x|x£¼-1»òx£¾3}D£®{x|-1£¼x£¼5}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÉèÊýÁÐ{an}µÄǰnÏîµÄºÍΪSn£¬ÒÑÖªa1=$\frac{3}{2}$£¬an+1=$\frac{{a}_{n}^{3}}{2{a}_{n}^{2}-3{a}_{n}+2}$£¬ÆäÖÐn¡ÊN*£®
£¨1£©Ö¤Ã÷£ºan£¼2£»
£¨2£©Ö¤Ã÷£ºan£¼an+1£»
£¨3£©Ö¤Ã÷£º2n-$\frac{4}{3}$¡ÜSn¡Ü2n-1+£¨$\frac{1}{2}$£©n£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©£¨0£¼¦Õ£¼¦Ð£¬¦Ø£¾0£©ÎªÅ¼º¯Êý£¬ÇÒº¯Êýy=f£¨x£©Í¼ÏóµÄÁ½ÏàÁÚ¶Ô³ÆÖá¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£®
£¨1£©Çóf£¨$\frac{¦Ð}{8}$£©µÄÖµ£»
£¨2£©º¯Êýh£¨x£©=af$£¨\frac{x}{2}£©-{sin^2}$x£¬x¡Ê[$\frac{¦Ð}{6}£¬\frac{2¦Ð}{3}$]£¬ÓÐ×îСֵΪ-1£¬ÇóaµÄÖµºÍº¯Êýh£¨x£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÈôÕý̬±äÁ¿¦Î·þ´ÓÕý̬·Ö²¼N£¨¦Ì£¬¦Ò2£©£¬Ôò¦ÎÔÚÇø¼ä£¨¦Ì-¦Ò£¬¦Ì+¦Ò£©£¬£¨¦Ì-2¦Ò£¬¦Ì+2¦Ò£©£¬£¨¦Ì-3¦Ò£¬¦Ì+3¦Ò£©ÄÚȡֵµÄ¸ÅÂÊ·Ö±ðÊÇ0.6826£¬0.9544£¬0.9973£®ÒÑ֪ij´óÐÍÆóҵΪ10000ÃûÔ±¹¤¶¨Öƹ¤×÷·þ£¬ÉèÔ±¹¤µÄÉí¸ß£¨µ¥Î»£ºcm£©·þ´ÓÕý̬·Ö²¼N£¨172£¬52£©£¬ÔòÊÊÒËÉí¸ßÔÚ177¡«182cm·¶Î§ÄÚÔ±¹¤´©µÄ·þ×°´óÔ¼Òª¶¨ÖÆ1359Ì×£®£¨ÓÃÊý×Ö×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Éèxy£¾0£¬Ôò$£¨{x^2}+\frac{4}{y^2}£©£¨{y^2}+\frac{1}{x^2}£©$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®-9B£®9C£®10D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÊýÁÐ{an}Âú×ã${a_n}•{a_{n+1}}=\frac{n}{n+2}£¬£¨n¡Ê{N^*}£©$£¬${a_1}=\frac{1}{2}$£®
£¨1£©Çóa2£¬a3£¬a4Öµ£»
£¨2£©¹éÄɲÂÏëÊýÁÐ{an}µÄͨÏʽ£¬²¢ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÊýÁÐ{an}ÖУ¬an=-3n+4£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈqÂú×ãq=an-an-1£¨n¡Ý2£©ÇÒb1=a1£¬ÔòÂú×ã$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+¡­+\frac{1}{{|{b_n}|}}£¼\frac{121}{81}$³ÉÁ¢µÄnµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªRΪʵÊý¼¯£¬¼¯ºÏA={x|x2-2x¡Ý0}£¬B={x|x£¾1}£¬Ôò£¨∁RA£©¡ÉB£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨0£¬1]C£®£¨1£¬2£©D£®£¨1£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸