精英家教网 > 高中数学 > 题目详情
18.已知集合A={x|(x-5)(x+1)<0},B={x|x2<9},则A∩B=(  )
A.{x|-1<x<3}B.{x|-3<x<5}C.{x|x<-1或x>3}D.{x|-1<x<5}

分析 解不等式化简集合A、B,根据交集的定义写出A∩B.

解答 解:集合A={x|(x-5)(x+1)<0}={x|-1<x<5},
B={x|x2<9}={x|-3<x<3},
则A∩B={x|-1<x<3}.
故选:A.

点评 本题考查了集合的化简与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ex(x2-x+1)-m,若?a,b,c∈R,且a<b<c,使得f(a)=f(b)=f(c)=0.则实数m的取值范围是$({1,\frac{3}{e}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若两曲线y=x2-1与y=alnx-1存在公切线,则正实数a的取值范围是(0,2e).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设z=$\frac{1}{1+i}$+i(i为虚数单位),则|z|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x∈($\frac{1}{e}$,1),设a=lnx,b=2${\;}^{ln\frac{1}{x}}$,c=elnx,则a,b,c的大小关系为(  )
A.c>b>aB.b>a>cC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=$\frac{1}{2}$x2-ax+lnx有极值,则a的取值范围是(  )
A.(-∞,-2)B.(-2,2)C.(-∞,2)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某押运公司为保障押运车辆运行安全,每周星期一到星期五对规定尾号的押运车辆进行保养维护,具体保养安排如下:
日期星期一星期二星期三星期四星期五
保养车辆尾号0和51和62和73和84和9
该公司下属的某分公司有车牌尾号分别为0、5、6的汽车各一辆,分别记为A、B、C.已知在非保养日,根据工作需要每辆押运车每天可能出车或不出车,A、B、C三辆车每天出车的概率依次为$\frac{2}{3}$、$\frac{2}{3}$、$\frac{1}{2}$,且A、B、C三车是否出车相互独立;在保养日,保养车辆不能出车.
(Ⅰ)求该分公司在星期四至少有一辆车外出执行押运任务的概率;
(Ⅱ)设X表示该分公司在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了调查某班级的作业完成情况,将该班级的52名学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知5号,18号,44号同学在样本中,那么样本中还有一位同学的编号应该是(  )
A.23B.27C.31D.33

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:
与教育有关与教育无关合计
301040
35540
合计651580
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635

查看答案和解析>>

同步练习册答案