精英家教网 > 高中数学 > 题目详情
20.已知数列{an}满足${a_n}•{a_{n+1}}=\frac{n}{n+2},(n∈{N^*})$,${a_1}=\frac{1}{2}$.
(1)求a2,a3,a4值;
(2)归纳猜想数列{an}的通项公式,并用数学归纳法证明.

分析 (1)利用数列的递推关系式,逐步求解数列的前几项即可.
(2)猜想通项公式,然后利用数学归纳法的证明步骤,证明即可.

解答 解:(1)数列{an}满足${a_n}•{a_{n+1}}=\frac{n}{n+2},(n∈{N^*})$,${a_1}=\frac{1}{2}$.n=1,2,3时计算得${a_2}=\frac{2}{3},{a_3}=\frac{3}{4},{a_4}=\frac{4}{5}$…(3分)
(2)猜想${a_n}=\frac{n}{n+1}$…(5分)
证明如下:①当n=1时,猜想显然成立;…(7分)
②假设当n=k(k∈N+)时猜想成立,即${a_k}=\frac{k}{k+1}$成立,…(8分)
则当n=k+1时,${a_{k+1}}=\frac{k}{k+2}•\frac{1}{a_k}=\frac{k}{k+2}•\frac{k+1}{k}=\frac{k+1}{(k+1)+1}$,
即n=k+1时猜想成立…(11分)
由①②得对任意n∈N*,有${a_n}=\frac{n}{n+1}$…(12分)

点评 本题考查数列的应用,数学归纳法的应用,考查逻辑推理能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某押运公司为保障押运车辆运行安全,每周星期一到星期五对规定尾号的押运车辆进行保养维护,具体保养安排如下:
日期星期一星期二星期三星期四星期五
保养车辆尾号0和51和62和73和84和9
该公司下属的某分公司有车牌尾号分别为0、5、6的汽车各一辆,分别记为A、B、C.已知在非保养日,根据工作需要每辆押运车每天可能出车或不出车,A、B、C三辆车每天出车的概率依次为$\frac{2}{3}$、$\frac{2}{3}$、$\frac{1}{2}$,且A、B、C三车是否出车相互独立;在保养日,保养车辆不能出车.
(Ⅰ)求该分公司在星期四至少有一辆车外出执行押运任务的概率;
(Ⅱ)设X表示该分公司在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法正确的是(  )
A.若|$\vec a|>|\vec b|$,$\vec a>\vec b$B.若$|\vec a|=|\vec b|$,$\vec a=\vec b$
C.若$\vec a=\vec b$,则$\vec a∥\vec b$D.若$\vec a≠\vec b$,则$\vec a$与$\vec b$不是共线向量

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:
与教育有关与教育无关合计
301040
35540
合计651580
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a,b,c都是正数,且4a+9b+c=3,则$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$的最小值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若点(-4,-2)在直线2x-y+m=0的下方,则m的取值范围是m>6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等比数列{an}中,公比q>1,a2=2,前三项和S3=7.
(1)求数列{an}的通项公式;
(2)记bn=log2an,cn=$\frac{1}{{b}_{n+1}•{b}_{n+2}}$,设数列{cn}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.5051-1被7除后的余数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知P(x0,y0)是椭圆C:$\frac{x^2}{4}+{y^2}=1$上的一点,F1,F2是C的两个焦点,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}<0$,则x0的取值范围是(  )
A.$({-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3}})$B.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$C.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$D.$({-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3}})$

查看答案和解析>>

同步练习册答案