精英家教网 > 高中数学 > 题目详情
12.在等比数列{an}中,公比q>1,a2=2,前三项和S3=7.
(1)求数列{an}的通项公式;
(2)记bn=log2an,cn=$\frac{1}{{b}_{n+1}•{b}_{n+2}}$,设数列{cn}的前n项和为Tn,求证:Tn<1.

分析 (1)利用等比数列的通项公式与求和公式即可得出.
(2)利用对数的运算性质、裂项求和方法即可得出.

解答 (1)解:q>1时,a2=a1q=2;S3=a1(1+q+q2)=7,解得a1=1,q=2;
∴an=2n-1
(2)证明:bn=log2an=n-1,
cn=$\frac{1}{{b}_{n+1}•{b}_{n+2}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
∴Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$<1.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、对数的运算性质、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.将函数y=sinxcosx的图象向右平移m(m>0)个单位,所得曲线的对称轴与函数$y=cos({ωx+\frac{π}{3}})({ω>0})$的图象的对称轴重合,则实数m的最小值为$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若正态变量ξ服从正态分布N(μ,σ2),则ξ在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)内取值的概率分别是0.6826,0.9544,0.9973.已知某大型企业为10000名员工定制工作服,设员工的身高(单位:cm)服从正态分布N(172,52),则适宜身高在177~182cm范围内员工穿的服装大约要定制1359套.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足${a_n}•{a_{n+1}}=\frac{n}{n+2},(n∈{N^*})$,${a_1}=\frac{1}{2}$.
(1)求a2,a3,a4值;
(2)归纳猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式-6x2-x+2<0的解集是$({-∞,-\frac{2}{3}})∪({\frac{1}{2},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}中,an=-3n+4,等比数列{bn}的公比q满足q=an-an-1(n≥2)且b1=a1,则满足$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+…+\frac{1}{{|{b_n}|}}<\frac{121}{81}$成立的n的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知中心在原点,对称轴为坐标轴的椭圆C的一个焦点F在抛物线y2=4x的准线上,且椭圆C过点$P(1,\frac{3}{2})$,直线与椭圆C交于A,B两个不同点.
(1)求椭圆C的方程;
(2)若直线的斜率为$\frac{1}{2}$,且不过点P,设直线PA,PB的斜率分别为k1,k2,求证:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若数列{an}是正项数列,且$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+$\sqrt{{a}_{3}}$+…+$\sqrt{{a}_{n}}$=n2+n,则$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义在R上的奇函数f(x)满足f(x-2)=-f(x),且在[0,1]上是增函数,则f($\frac{1}{4}$),f(-$\frac{1}{4}$),f($\frac{3}{2}$)的大小关系是$f(-\frac{1}{4})$<$f(\frac{1}{4})$<$f(\frac{3}{2})$.

查看答案和解析>>

同步练习册答案