精英家教网 > 高中数学 > 题目详情
17.已知数列{an}中,an=-3n+4,等比数列{bn}的公比q满足q=an-an-1(n≥2)且b1=a1,则满足$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+…+\frac{1}{{|{b_n}|}}<\frac{121}{81}$成立的n的最大值为(  )
A.3B.4C.5D.6

分析 求出等比数列的公比和首项,再由等比数列的求和公式和不等式解法,可得n<5,即可得到所求最大值.

解答 解:数列{an}中,an=-3n+4,
等比数列{bn}的公比q满足q=an-an-1(n≥2)=-3,
且b1=a1=1,
bn=b1qn-1=(-3)n-1
满足$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+…+\frac{1}{{|{b_n}|}}<\frac{121}{81}$成立,
即为1+$\frac{1}{3}$+$\frac{1}{9}$+…+$\frac{1}{{3}^{n-1}}$=$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$<$\frac{121}{81}$,
解得n<5,
则则满足$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+…+\frac{1}{{|{b_n}|}}<\frac{121}{81}$成立的n的最大值为4.
故选:B.

点评 本题考查等比数列的通项公式和求和公式,考查不等式的解法,化简整理的运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.为了调查某班级的作业完成情况,将该班级的52名学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知5号,18号,44号同学在样本中,那么样本中还有一位同学的编号应该是(  )
A.23B.27C.31D.33

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:
与教育有关与教育无关合计
301040
35540
合计651580
(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”?
(2)求这80位师范类毕业生从事与教育有关工作的频率;
(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
P(K2≥k00.500.400.250.150.100.050.0250.010
k00.4550.7081.3232.0722.7063.8415.0236.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若点(-4,-2)在直线2x-y+m=0的下方,则m的取值范围是m>6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等比数列{an}中,公比q>1,a2=2,前三项和S3=7.
(1)求数列{an}的通项公式;
(2)记bn=log2an,cn=$\frac{1}{{b}_{n+1}•{b}_{n+2}}$,设数列{cn}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足$\left\{\begin{array}{l}{2x-y+4≥0}\\{x-y+3≥0}\\{x≤0}\\{y≥0}\end{array}\right.$,则目标函数z=-3y-2x的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.5051-1被7除后的余数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在数列{an}中,${a_1}=\frac{3}{2},{a_{n+1}}=a_n^2-2{a_n}+2$.,n∈N*
(1)求证:1<an+1<an<2;
(2)求证:$\frac{6}{{{2^{n-1}}+3}}≤{a_n}≤\frac{{{2^{n-1}}+2}}{{{2^{n-1}}+1}}$;
(3)求证:n<sn<n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设不等式|x-2|<a的解集为A,且$\frac{3}{2}$∈A,$\frac{1}{2}$∉A,则a的取值范围是(  )
A.$\frac{1}{2}$<a<$\frac{3}{2}$B.$\frac{1}{2}$≤a<$\frac{3}{2}$C.$\frac{1}{2}$<a≤$\frac{3}{2}$D.$\frac{1}{2}$≤a≤$\frac{3}{2}$

查看答案和解析>>

同步练习册答案