精英家教网 > 高中数学 > 题目详情
如图,正三棱柱ABC-A1B1C1中,点D是BC的中点.
(Ⅰ)求证:AD⊥平面BCC1B1; 
(Ⅱ)求证:A1C∥平面AB1D.
分析:(1)根据正棱柱的性质,得到CC1⊥平面ABC,得CC1⊥AD,正三角形ABC中利用“三线合一”证出AD⊥BC,利用线面垂直判定定理即可证出AD⊥面BCC1B1
(2)连结A1B,交AB1于E,连接DE,△A1BC中利用中位线定理证出DE∥A1C,利用线面平行判定定理即可证出
A1C∥平面AB1D.
解答:证明:(1)∵棱柱ABC-A1B1C1为正三棱柱
∴CC1⊥平面ABC,
又∵AD?平面ABC,∴CC1⊥AD
又∵正三角形ABC中,D是BC的中点.
∴AD⊥BC
∵BC∩CC1=C,∴AD⊥面BCC1B1
(2)连结A1B,交AB1于E,连接DE,
∵D为BC的中点,E是A1B的中点,
∴DE∥A1C且DE=
1
2
A1C
又∵A1C?平面AB1D,DE?平面AB1D.
∴A1C∥平面AB1D.
点评:本题在正三棱柱中证明线面垂直和线面平行,着重考查了正棱柱的性质、线面垂直平行的判定与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1各棱长都等于a,E是BB1的中点.
(1)求直线C1B与平面A1ABB1所成角的正弦值;
(2)求证:平面AEC1⊥平面ACC1A1
(3)求点C1到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是(  )
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)设点O为AB1上的动点,当OD∥平面ABC时,求
AOOB1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1中(注:底面为正三角形且侧棱与底面垂直),BC=CC1=2,P,Q分别为BB1,CC1的中点.
(Ⅰ)求多面体ABC-A1PC1的体积;
(Ⅱ)求A1Q与BC1所成角的大小.

查看答案和解析>>

同步练习册答案