精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,Sn为前n项和,且a1<0,3a2=5a4,则Sn中最小的是( )
A.S6
B.S10
C.S6或S7
D.S12
【答案】分析:可设等差数列的公差为d,因为3a2=5a4,所以得到a1与d的关系式,再根据等差数列的前n项和的公式sn=na1+d,把a1代入得到sn与n的二次函数关系式,开口向上,求出函数有最小值时n的值即可.
解答:解:设等差数列的公差为d,因为3a2=5a4,得:a1+6d=0,因为a1<0,所以d>0
而sn=na1+=n2-n为开口向上的二次函数,
当n=时,函数取最小值,又因为n为正整数,所以当n=6或7时,函数取最值.
故选C.
点评:考查学生灵活运用等差数列性质的能力,以及会用二次函数的方法求函数最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案