| A. | 5-2$\sqrt{3}$ | B. | $5+2\sqrt{3}$ | C. | $\sqrt{5-2\sqrt{3}}$ | D. | $\sqrt{3}$ |
分析 根据双曲线的定义和性质,结合余弦定理建立方程关系,利用双曲线的离心率的定义进行求解即可.
解答 解:由题设及双曲线定义知,|AF1|-|AF2|=2a=|BF2|,|BF1|-|BF2|=2a,
∴|BF1|=4a.在△F1BF2中,|F1F2|=2c,∠F2BF1=30°,
由余弦定理得,$4{c^2}=4{a^2}+16{a^2}-2×2a×4a×\frac{{\sqrt{3}}}{2}$,
∴$e=\frac{c}{a}=\sqrt{5-2\sqrt{3}}$,
故选:C.
点评 本题主要考查双曲线的离心率的计算,根据条件结合双曲线的定义和性质,利用余弦定理是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com