精英家教网 > 高中数学 > 题目详情
19.函数y=$\frac{4{x}^{2}+2x+5}{{x}^{2}+x+1}$(x>1)的最小值是$\frac{16-2\sqrt{7}}{3}$.

分析 由y=$\frac{4{x}^{2}+2x+5}{{x}^{2}+x+1}$,得到(4-y)x2+(2-y)x+5-y=0,即关于x的方程由大于1的根,方程根的关系即可求出y的范围,即可求出y的最小值.

解答 解:∵y=$\frac{4{x}^{2}+2x+5}{{x}^{2}+x+1}$,
∴yx2+yx+y=4x2+2x+5,
∴(4-y)x2+(2-y)x+5-y=0,
当y=4时,此时x=$\frac{1}{2}$,不满足题意,
当y≠4时,
∵x>1,
∴$\left\{\begin{array}{l}{△=(2-y)^{2}-4(4-y)(5-y)≥0}\\{{x}_{1}+{x}_{2}=\frac{y-2}{4-y}>2}\\{{x}_{1}•{x}_{2}=\frac{4-y}{5-y}>1}\end{array}\right.$,
解得$\frac{16-2\sqrt{7}}{3}$≤y<4,
故y的最小值为$\frac{16-2\sqrt{7}}{3}$,
故答案为:$\frac{16-2\sqrt{7}}{3}$

点评 本题考查了利用判别式法,求函数的值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=x2+ax+b的零点是1和3,则函数f(x)(  )
A.在(-∞,3)上单调递增
B.在(-∞,2]上单调递减,在[2,+∞)上单调递增
C.在[1,3]上单调递增
D.单调性不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若定义在R上的函数f(x),满足f(x+2)=f(x),且当x∈[-1,1]时,f(x)=x2,函数g(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x-1),x>1}\\{{2}^{x},x≤1}\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-4,5]内的零点的个数为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{{\begin{array}{l}{4x+1,}&{x<1}\\{{x^2}-6x+10,}&{x≥1}\end{array}}\right.$,关于a的不等式f(a)-ta+2t-2>0的解集是(a1,a2)∪(a3,+∞),若a1a2a3<0,则实数t的取值范围是(  )
A.(-3,4)B.$(\frac{1}{2},4)$C.$(-2,\frac{1}{2})$D.(-3,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{3}$sin(x+$\frac{π}{4}$),x∈R,若f(θ)+f(-θ)=$\frac{3}{2}$,θ∈(0,$\frac{π}{2}$),求tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=f(x)是定义在R上的偶函数,对于x∈R都有f(x+4)=f(x)+f(2)成立,且f(-4)=-2,当x1,x2∈[0,2],且x1≠x2时,都有(x1-x2)[f(x1)-f(x2)]>0,则下列命题错误的是(  )
A.f(2016)=-2B.函数y=f(x)的一条对称轴为x=-6
C.函数y=f(x)在[-8,-6]上为减函数D.函数y=f(x)在[-9,9]上有4个根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1,F2,四个顶点围成的四边形面积为4$\sqrt{2}$.
(1)求椭圆的标准方程;
(2)设O为坐标原点,过点P(0,1)的动直线与椭圆交于A,B两点,求证:$\overrightarrow{OA}$•$\overrightarrow{OB}$+$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合A={x|-1≤x<3},B={x|2x-4≥x-2},求A∩B;A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,已知直线l经过点P($\frac{1}{2}$,1),倾斜角α=$\frac{π}{6}$.在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程为ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(1)求直线l的参数方程及圆C的直角坐标方程;
(2)设直线l与圆C交于点A,B,求|PA|•|PB|.

查看答案和解析>>

同步练习册答案