分析 由y=$\frac{4{x}^{2}+2x+5}{{x}^{2}+x+1}$,得到(4-y)x2+(2-y)x+5-y=0,即关于x的方程由大于1的根,方程根的关系即可求出y的范围,即可求出y的最小值.
解答 解:∵y=$\frac{4{x}^{2}+2x+5}{{x}^{2}+x+1}$,
∴yx2+yx+y=4x2+2x+5,
∴(4-y)x2+(2-y)x+5-y=0,
当y=4时,此时x=$\frac{1}{2}$,不满足题意,
当y≠4时,
∵x>1,
∴$\left\{\begin{array}{l}{△=(2-y)^{2}-4(4-y)(5-y)≥0}\\{{x}_{1}+{x}_{2}=\frac{y-2}{4-y}>2}\\{{x}_{1}•{x}_{2}=\frac{4-y}{5-y}>1}\end{array}\right.$,
解得$\frac{16-2\sqrt{7}}{3}$≤y<4,
故y的最小值为$\frac{16-2\sqrt{7}}{3}$,
故答案为:$\frac{16-2\sqrt{7}}{3}$
点评 本题考查了利用判别式法,求函数的值域,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 在(-∞,3)上单调递增 | |
| B. | 在(-∞,2]上单调递减,在[2,+∞)上单调递增 | |
| C. | 在[1,3]上单调递增 | |
| D. | 单调性不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,4) | B. | $(\frac{1}{2},4)$ | C. | $(-2,\frac{1}{2})$ | D. | (-3,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(2016)=-2 | B. | 函数y=f(x)的一条对称轴为x=-6 | ||
| C. | 函数y=f(x)在[-8,-6]上为减函数 | D. | 函数y=f(x)在[-9,9]上有4个根 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com