精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系xOy中,已知直线l经过点P($\frac{1}{2}$,1),倾斜角α=$\frac{π}{6}$.在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程为ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(1)求直线l的参数方程及圆C的直角坐标方程;
(2)设直线l与圆C交于点A,B,求|PA|•|PB|.

分析 (1)根据直线经过的点的坐标及直线的倾斜角,求出直线的参数方程,利用极坐标与直角坐标的互化方法,可得圆C的直角坐标方程.
(2)设A,B对应的参数为t1和t2,以直线l的参数方程代入圆的方程整理得到t2-$\frac{\sqrt{3}}{2}$t-$\frac{7}{4}$=0,由|PA|•|PB|=|t1t2|求出点P到A、B两点的距离之积.

解答 解:(1)直线l经过点P($\frac{1}{2}$,1),倾斜角α=$\frac{π}{6}$,
∴参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$(t为参数),(3分)
ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$)=2cosθ+2sinθ.
故圆的直角坐标方程为x2+y2-2x-2y=0.…(6分)
(2)把$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$代入x2+y2-2x-2y=0得t2-$\frac{\sqrt{3}}{2}$t-$\frac{7}{4}$=0            …(9分)
设A、B对应的参数分别为t1、t2,则${t_1}{t_2}=-\frac{7}{4}$
∴|PA|•|PB|=$|{{t_1}•{t_2}}|=\frac{7}{4}$.…(12分)

点评 本题考查直线的参数方程以及参数的几何意义,极坐标方程化为直角坐标方程,利用直线的参数方程中参数的几何意义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数y=$\frac{4{x}^{2}+2x+5}{{x}^{2}+x+1}$(x>1)的最小值是$\frac{16-2\sqrt{7}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=ex+lnx在x=1处的切线的斜率等于e+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.曲线C的极坐标方程为ρ2=$\frac{36}{{4{{cos}^2}θ+9{{sin}^2}θ}}$;
(1)求曲线C的直角坐标方程;
(2)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)=$\left\{\begin{array}{l}{log_a}x,x>1\\(a-2)x-1,x≤1\end{array}$在(-∞,+∞)上单调递增,则a的取值范围是(  )
A.(1,+∞)B.(2,+∞)C.(1,3]D.(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果等差数列{an}中,a3=3,那么数列{an}前5项的和为(  )
A.15B.20C.25D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x)在(-∞,1)上是减函数,且函数y=f(x+1)为偶函数,设a=f(30.3),b=f(log${\;}_{\frac{1}{2}}$5),c=f(0),则a,b,c的大小关系是(  )
A.b>c>aB.c>a>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知A={x|ax+1=0},B={x|x2-3x+2=0},若A∪B=B,则a的取值集合是$\left\{{-\frac{1}{2},0,-1}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等差数列{an}的前n项和为Sn,若S9=45,则a2+a4+a9=15.

查看答案和解析>>

同步练习册答案