精英家教网 > 高中数学 > 题目详情
在正三棱锥P-ABC(顶点在底面的射影是底面正三角形的中心)中,AB=4,PA=8,过A作与PB,PC分别交于D和E的截面,则截面△ADE的周长的最小值是   
【答案】分析:画出正三棱锥P-ABC侧面展开图,将问题转化为求平面上两点间的距离最小值问题,不难求得结果.
解答:解:三棱锥的侧面展开图,如图,
△ADE的周长的最小值为AA1
在△PAB中,sin∠APB=,∴cos∠APB=1-2sin2∠APB=
在△APA1中,∴sin∠APA1=sin(∠APB+∠APB)=sin∠APBcos∠APB+cos∠APBsin∠APB=+×=
所以AA1=2PA×sin∠APA1=11,
故答案为:11.
点评:本题考查的知识点是棱锥的结构特征,其中将三棱锥的侧面展开,将空间问题转化为平面上两点之间的距离问题,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、在正三棱锥P-ABC中,D、E分别是AB、BC的中点,有下列四个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE;④平面PDE⊥平面ABC.其中正确的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D,E分别是AB,BC的中点,有下列三个论断:
①AC⊥PB;
②AC∥平面PDE;
③AB⊥平面PDE.
其中正确论断的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,三条侧棱两两垂直,且侧棱长为a,则点P到平面ABC的距离为
3
3
a
3
3
a

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,AB=
2
,PA=
3
+1
,过点A作截面交PB,PC分别于D,E,则截面△ADE的周长的最小值是
6
+
2
6
+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱锥P-ABC中,M、N分别是侧棱PB、PC的中点,若截面AMN⊥侧面PBC,底面边长为2,则此三棱锥的体积是(  )
A、
3
2
B、
5
3
C、
5
D、
15
3

查看答案和解析>>

同步练习册答案