精英家教网 > 高中数学 > 题目详情
8.下列各命题中不正确的是(  )
A.函数f(x)=ax+1(a>0,a≠1)的图象过定点(-1,1)
B.函数$f(x)={x^{\frac{1}{2}}}$在[0,+∞)上是增函数
C.函数f(x)=logax(a>0,a≠1)在(0,+∞)上是增函数
D.函数f(x)=x2+4x+2在(0,+∞)上是增函数

分析 A,由a0=1可判定;
B,根据幂函数的性质可判定;
C,函数f(x)=logax(a>1)在(0,+∞)上是增函数;
D,由函数f(x)=x2+4x+2的单调增区间为(-2,+∞)可判定;

解答 解:对于A,∵a0=1∴函数f(x)=ax+1(a>0,a≠1)的图象过定点(-1,1),正确;
对于B,根据幂函数的性质可判定,函数$f(x)={x^{\frac{1}{2}}}$在[0,+∞)上是增函数,正确;
对于C,函数f(x)=logax(a>1)在(0,+∞)上是增函数,故错;
对于D,函数f(x)=x2+4x+2的单调增区间为(-2,+∞),故在(0,+∞)上是增函数,正确;
故选:C.

点评 本考查了命题真假的判定,涉及了函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在表中,如何设计甲、乙两种货物应各托运的箱数可以获得最大利润,最大利润是多少?
货物体积(m3/箱)重量(50kg/箱)利润(百元/箱)
5220
4510
托运限制2413

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则(  )
A.m>nB.m<nC.m=nD.m是n的近似值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=sin($\frac{3π}{2}$+x)cos($\frac{π}{6}$-x)的最大值为$\frac{1}{2}-\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题?x∈R,x2-2x+4≤0的否定为?x∈R,x2-2x+4>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的偶函数f(x)满足f(x)+f(x+1)=0,且在[-3,-2]上f(x)=2x+5,A、B是三边不等的锐角三角形的两内角,则下列不等式正确的是(  )
A.f(sinA)>f(sinB)B.f(cosA)>f(cosB)C.f(sinA)>f(cosB)D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知向量$\overrightarrow{AB}=(6,1)$,$\overrightarrow{BC}=(x,y)$,$\overrightarrow{CD}=(-2,-3)$,若$\overrightarrow{BC}∥\overrightarrow{AD}$,试求x与y之间的表达式.

(2)在平面直角坐标系中,O为坐标原点,A、B、C三点满足$\overrightarrow{OC}=\frac{1}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}$,求证:A、B、C三点共线,并求$\frac{{|\overrightarrow{AC}|}}{{|\overrightarrow{CB}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足a1=1,(an-3)an+1-an+4=0(n∈N*).
(1)求a2,a3,a4
(2)猜想{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正数数列{an}的前n项和Sn=$\frac{1}{2}$(an+$\frac{1}{an}$),
(1)求a1,a2,a3
(2)归纳猜想an的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

同步练习册答案