精英家教网 > 高中数学 > 题目详情

【题目】如图,在几何体ABCDQP中,AD⊥平面ABPQ,AB⊥AQ,AB∥CD∥PQ,CD=AD=AQ=PQ= AB.
(1)证明:平面APD⊥平面BDP;
(2)求二面角A﹣BP﹣C的正弦值.

【答案】
(1)证明:取AB中点E,连结PE,

∵AD⊥平面ABPQ,AB⊥AQ,AB∥CD∥PQ,设CD=AD=AQ=PQ= AB=1.

∴PB⊥AD,PE=1,且PE⊥AB,

∴AP=PB= =

∴AP2+BP2=AB2,∴AP⊥BP,

∵AD∩AP=A,∴PB⊥平面APD,

∵PB平面BDP,∴平面APD⊥平面BDP


(2)解:以A为原点,AQ为x轴,AB为y轴,AD为z轴,

建立空间直角坐标系,

则P(1,1,0),B(0,2,0),C(0,1,1),

=(1,﹣1,0), =(0,﹣1,1),

设平面BPC的法向量 =(x,y,z),

,取x=1,得 =(1,1,1),

平面ABP的法向量 =(0,0,1),

设二面角A﹣BP﹣C的平面角为θ,

则cosθ= =

∴sinθ= =

∴二面角A﹣BP﹣C的正弦值为


【解析】(1)取AB中点E,连结PE,推导出PE⊥AB,AP⊥BP,从而PB⊥平面APD,由此能证明平面APD⊥平面BDP.(2)以A为原点,AQ为x轴,AB为y轴,AD为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣BP﹣C的正弦值.
【考点精析】本题主要考查了平面与平面垂直的判定的相关知识点,需要掌握一个平面过另一个平面的垂线,则这两个平面垂直才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】| |=1,| |= =0,点C在∠AOB内,且∠AOC=30°,设 =m +n (m、n∈R),则 等于(
A.
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,∠A1AC=60°,AC=2AA1=4,点D,E分别是AA1 , BC的中点.
(1)证明:DE∥平面A1B1C;
(2)若AB=2,∠BAC=60°,求直线DE与平面ABB1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|+|x+4|,g(x)=x2+4x+3.
(1)求不等式f(x)≥g(x)的解集;
(2)若f(x)≥|1﹣5a|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y2=﹣2px(p>0)的焦点F与双曲线x2﹣8y2=8的左焦点重合,点A在抛物线上,且|AF|=6,若P是抛物线准线上一动点,则|PO|+|PA|的最小值为(
A.3
B.4
C.3
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x>0),m∈R.
(1)若函数f(x)有零点,求实数m的取值范围;
(2)若函数f(x)的图象在点(1,f(x))处的切线的斜率为 ,且函数f(x)的最大值为M,求证:1<M<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PC⊥底面ABCD,M是PD的中点,AC⊥AD,BA⊥BC,PC=AC=2BC,∠ACD=∠ACB.
(1)求证:PA⊥CM;
(2)求二面角M﹣AC﹣P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

如图,在四棱锥PABCD中,底面ABCD是矩形,PA平面ABCDAP=ABBP=BC=2EF分别是PB,PC的中点.

()证明:EF平面PAD

()求三棱锥EABC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是 ,其余每局比赛甲队获胜的概率都是 .设各局比赛结果相互独立.
(1)分别求甲队3:0,3:1,3:2胜利的概率;
(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.

查看答案和解析>>

同步练习册答案