精英家教网 > 高中数学 > 题目详情

【题目】甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是 ,其余每局比赛甲队获胜的概率都是 .设各局比赛结果相互独立.
(1)分别求甲队3:0,3:1,3:2胜利的概率;
(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.

【答案】
(1)解:甲队获胜有三种情形,其每种情形的最后一局肯定是甲队胜

①3:0,概率为P1=( 3=

②3:1,概率为P2=C 2×(1﹣ )× =

③3:2,概率为P3=C 2×(1﹣ 2× =

∴甲队3:0,3:1,3:2胜利的概率:


(2)解:乙队得分X,则X的取值可能为0,1,2,3.

由(1)知P(X=0)=P1+P2=

P(X=1)=P3=

P(X=2)=C (1﹣ 2×( 2× =

P(X=3)=(1﹣ 3+C (1﹣ 2×( )× =

则X的分布列为

X

3

2

1

0

P

E(X)=3× +2× +1× +0× =


【解析】(1)甲队获胜有三种情形,①3:0,②3:1,③3:2,其每种情形的最后一局肯定是甲队胜,分别求出相应的概率,最后根据互斥事件的概率公式求出甲队获得这次比赛胜利的概率;(2)X的取值可能为0,1,2,3,然后利用相互独立事件的概率乘法公式求出相应的概率,列出分布列,最后根据数学期望公式解之即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在几何体ABCDQP中,AD⊥平面ABPQ,AB⊥AQ,AB∥CD∥PQ,CD=AD=AQ=PQ= AB.
(1)证明:平面APD⊥平面BDP;
(2)求二面角A﹣BP﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求以圆C1x2y212x2y130和圆C2x2y212x16y250的公共弦为直径的圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=(x2﹣ax+a+1)ex(a∈N)在区间(1,3)只有1个极值点,则曲线f(x)在点(0,f(0))处切线的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当 取得最大值时, 的最大值为(
A.0
B.1
C.
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( )上单调,则ω的最大值为(
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题函数内恰有一个零点;命题函数上是减函数,若为真命题,则实数的取值范围是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率.祖冲之,在世界数学史上第一次将圆周率(π)值计算到小数点后的第7位,即3.1415926到3.1415927之间,数列{an}是公差大于0的等差数列,其前三项是“31415926”中连续的三个数,数列{bn}是等比数列,其公比大于1的正整数且前三项是“31415926”中的三个数,且a3=b3
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)cn= ,求c1+c2+c3+…+c .(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次试验中,有两个试验数据统计的结果如下面的表格1.

(1)在给出的坐标系中画出的散点图; 并判断正负相关;

(2)填写表格2,然后根据表格2的内容和公式求出的回归直线方程,并估计当10的值是多少?(公式:

1

2

3

4

5

2

3

4

4

5

表1

表格2

序号

1

1

2

2

2

3

3

3

4

4

4

4

5

5

5

查看答案和解析>>

同步练习册答案