【题目】2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率.祖冲之,在世界数学史上第一次将圆周率(π)值计算到小数点后的第7位,即3.1415926到3.1415927之间,数列{an}是公差大于0的等差数列,其前三项是“31415926”中连续的三个数,数列{bn}是等比数列,其公比大于1的正整数且前三项是“31415926”中的三个数,且a3=b3 .
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)cn=
,求c1+c2+c3+…+c
.(n∈N*)
【答案】解:(Ⅰ)由题可知a1=1,a2=5,a3=9,
b1=4,b2=6,b3=9,
所以an=1+4(n﹣1)=4n﹣3,bn=4×
;
(Ⅱ)由(I)可知cn=
,
则c1+c3+…+
=1﹣
+
﹣
+…+
﹣
=1﹣
,
c2+c4+…+
=(2+4+…+2n)﹣[(2﹣2)+(4﹣2)+(6﹣2)+…+(2n﹣2)]log32
=
﹣[
﹣2n]log32
=2n﹣1+22n﹣2﹣(22n﹣2﹣2n﹣1)log32,
故所求值为1﹣
+2n﹣1+22n﹣2﹣(22n﹣2﹣2n﹣1)log32
【解析】(Ⅰ)通过题干确定数列{an}、{bn}的前三项,进而可得结论;(Ⅱ)通过(I)可求出cn的表达式,利用裂项相消法可知奇数项的和,利用分组求和法可求出偶数项的和,进而相加即得结论.
【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系
.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求三棱锥E—ABC的体积V.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是
,其余每局比赛甲队获胜的概率都是
.设各局比赛结果相互独立.
(1)分别求甲队3:0,3:1,3:2胜利的概率;
(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c=
,△ABC的面积为
,求△ABC的周长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=blnx+a(a>0,b>0)在x=1处的切线与圆(x﹣2)2+y2=4相交于A、B两点,并且弦长|AB|= 2
,则
+
﹣
的最小值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为R,f(﹣2)=2021,对任意x∈(﹣∞,+∞),都有f'(x)<2x成立,则不等式f(x)>x2+2017的解集为( )
A.(﹣2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)
D.(﹣∞,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为
(α为参数)
(1)求曲线C的普通方程;
(2)在以O为极点,x正半轴为极轴的极坐标系中,直线l方程为
ρsin(
﹣θ)+1=0,已知直线l与曲线C相交于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
.
(I)讨论函数的单调性,并证明当x>﹣2时,xex+2+x+4>0;
(Ⅱ)证明:当a∈[0,1)时,函数g(x)=
(x>﹣2)有最小值,设g(x)最小值为h(a),求函数h(a)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1、F2分别是双曲线
﹣
=1(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是( )
A.(1,
)
B.(
,+∞)
C.(
,2)
D.(2,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com