精英家教网 > 高中数学 > 题目详情
5.如图,P为△ABC所在平面外一点,PA⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F,求证:
(1)BC⊥平面PAB;
(2)平面AEF⊥平面PBC.

分析 (1)由线面垂直得到线线垂直,再由∠ABC=90°得到AB⊥BC,再由线面垂直的判定得答案;
(2)由线面垂直得到面面垂直,再由已知结合面面垂直的性质可得AE⊥平面PBC,最后由面面垂直的判定得答案.

解答 证明:(1)∵PA⊥平面ABC,BC?平面ABC,∴PA⊥BC,
又∠ABC=90°,∴AB⊥BC,
而PA∩AB=A,
∴由线面垂直的判断可得BC⊥平面PAB;
(2)由(1)知,BC⊥平面PAB,
而BC?平面PBC,∴平面PAB⊥平面PBC,且平面PAB∩平面PBC=PB,
又AE⊥PB于E,∴AE⊥平面PBC,
而AE?平面AEF,
∴平面AEF⊥平面PBC.

点评 本题考查直线与平面垂直、平面与平面垂直的判断,考查空间想象能力和思维能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列三个命题:
①函数f(x)=cos4x-sin4x的最小正周期为$\frac{π}{2}$
②将函数y=sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位得到函数y=sin2x的图象
③函数f(x)=2cosx-2cos(x+$\frac{π}{3}$)在x∈[0,$\frac{π}{2}$]上的值域为[1,$\sqrt{3}$]
其中正确的命题个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列五个命题:
①“a>2”是“f(x)=ax-sinx为R上的增函数”的充分不必要条件;
②函数f(x)=-$\frac{1}{3}{x^3}$+x+1有两个零点;
③集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是$\frac{1}{3}$;
④动圆C既与定圆(x-2)2+y2=4相外切,又与y轴相切,则圆心C的轨迹方程是y2=8x(x≠0);
⑤若函数f(x)=aln(x+2)+$\frac{x}{{{x^2}+1}}$(x>-2,a∈R)有最大值,则f(x)一定有最小值.其中正确的命题序号是①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知甲、乙、丙、丁四位同学,在某个时段内每人互不重复地从语文、数学、英语、文综这四个科目中选择一科进行复习.现有下面五种均为正确的说法:
A.甲不在复习语文,也不在复习数学;B.乙不在复习英语,也不在复习语文;
C.丙不在复习文综,也不在复习英语;D.丁不在复习数学,也不在复习语文;
E.如果甲不在复习英语,那么丙不在复习语文.
根据以上信息,某同学判断如下:
①甲在复习英语  ②乙在复习文综  ③丙在复习数学  ④丁在复习英语
则上述所有判断正确的序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数h(x)=x2,m(x)=2elnx(e为自然对数的底数),φ(x)=x-2,d(x)=-1.有下列命题:
①f(x)=h(x)-m(x)在x∈(0,$\sqrt{e}$)递减;
②h(x)和d(x)存在唯一的“隔离直线”;
③h(x)和φ(x)存在“隔离直线”y=kx+b,且b的最大值为-$\frac{1}{4}$;
④函数h(x)和m(x)存在唯一的隔离直线.其中真命题的是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知sinα-cosα=$\sqrt{2}$,则sinα•cosα=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x≠0,则y=4-($\frac{1}{6}$x2+3x)2有最值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-cosx,则f($\frac{3}{5}$),f(0),f(-$\frac{1}{2}$)的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在等比数列{an}中,已知a1+a3=20,a4+a6=$\frac{5}{2}$,求S5

查看答案和解析>>

同步练习册答案