精英家教网 > 高中数学 > 题目详情
10.已知sinα-cosα=$\sqrt{2}$,则sinα•cosα=-$\frac{1}{2}$.

分析 把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系化简,整理即可求出所求式子的值.

解答 解:把sinα-cosα=$\sqrt{2}$两边平方得:(sinα-cosα)2=sin2α+cos2α-2sinαcosα=1-2sinαcosα=2,
则sinα•cosα=-$\frac{1}{2}$,
故答案为:-$\frac{1}{2}$

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设$\overrightarrow{a}$是已知的平面向量且$\overrightarrow{a}$≠0.关于向量$\overrightarrow{a}$的分解,有如下四个命题:
①给定向量$\overrightarrow{b}$,总存在向量$\overrightarrow{c}$,使$\overrightarrow{a}$=$\overrightarrow{b}$+$\overrightarrow{c}$;
②给定向量$\overrightarrow{b}$和$\overrightarrow{c}$,总存在实数λ和μ,使$\overrightarrow{a}$=λ$\overrightarrow{b}$+μ$\overrightarrow{c}$;
③给定单位向量$\overrightarrow{b}$和正数μ,总存在单位向量$\overrightarrow{c}$和实数λ,使$\overrightarrow{a}$=λ$\overrightarrow{b}$+μ$\overrightarrow{c}$;
④给定正数λ和μ,总存在单位向量$\overrightarrow{b}$和单位向量$\overrightarrow{c}$,使$\overrightarrow{a}$=λ$\overrightarrow{b}$+μ$\overrightarrow{c}$.
上述命题中的向量$\overrightarrow{b}$,$\overrightarrow{c}$和$\overrightarrow{a}$在同一平面内且两两不共线,则真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知下列四个命题:
(1)若ax2-ax+1>0在x∈R上恒成立,则0<a<4;
(2)锐角三角形△ABC中,A=$\frac{π}{3}$,则$\frac{1}{2}$<sinB<1;
(3)已知k∈R,直线y-kx-1=0与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1({m>0})$恒有公共点,则m∈[1,5);
(4)定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),当x?0时,f(x)>0,则函数f(x)在[a,b]上有最小值f(b).
其中的真命题是(2)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.给出以下结论,其中错误的有③④
①正方形的直观图可能为平行四边形
②在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,则△ABC为钝角三角形
③已知数列{an}的前n项和Sn=n2+n+1,则an=2n(n∈N*
④若关于x的不等式x2-2ax+1≤0有解,则a的取值范围为(-∞,-1)∪(1,+∞)
⑤函数y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$ (x∈R)的最小值为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,P为△ABC所在平面外一点,PA⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F,求证:
(1)BC⊥平面PAB;
(2)平面AEF⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下命题正确命题的个数为(  )
(1)化极坐标方程ρ2cosθ-ρ=0为直角坐标方程为x2+y2=0或y=1
(2)集合A={x||x+1|<1},B={x|y=-$\sqrt{2x-{x^2}}$},则A⊆B
(3)若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),则$\underset{lim}{h→0}\frac{f({x}_{0}+h)-f({x}_{0}-h)}{h}$的值为2f′(x0)(4)若关于x的不等式|ax-2|+|ax-a|≥2(其中a>0)的解集为R,则实数a≥4(5)将点P(-2,2)变换为P′(-6,1)的伸缩变换公式为$\left\{\begin{array}{l}{x′=3x}\\{y′=2y}\end{array}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆M的圆心在直线x+y+1=0上,且与y轴交于两点A(0,-1),B(0,-3)
(Ⅰ)求圆M的方程;
(Ⅱ)已知直线2ax-by-2=0(a>0,b>0)被圆M截得的弦长为2$\sqrt{2}$,求a+b3的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(-x2+2x)ex,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=$\frac{{a}^{x}-{a}^{-x}}{{a}^{x}+{a}^{-x}}$(0<a<1)
(1)证明:f(x)定义域上的减函数;
(2)求f(x)的值域.

查看答案和解析>>

同步练习册答案