精英家教网 > 高中数学 > 题目详情
1.已知A(x1,y1)是抛物线y2=4x上的一个动点,B(x2,y2)是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上的一个动点,N(1,0)是一定点,若AB∥x轴,且x1<x2,且△NAB的周长的取值范围是_($\frac{10}{3}$,4).

分析 可考虑用抛物线的焦半径公式和椭圆的焦半径公式来做,先通过联立抛物线与椭圆方程,求出A,B点的横坐标范围,再利用焦半径公式转换为以B点的横坐标为参数的式子,再根据前面求出的B点横坐标范围计算即可.

解答 解:如图A,B分别在如图所示的实线运动,
由$\left\{\begin{array}{l}{{y}^{2}=4x}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$得,抛物线y2=4x与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1
在第一象限的交点横坐标为$\frac{2}{3}$,
设A(x1,y1),B(x2,y2),
则0<x1<$\frac{2}{3}$,$\frac{2}{3}$<x2<2,
由可得,三角形ABN的周长l=|AN|+|AB|+|BN|
=x1+$\frac{p}{2}$+x2-x1+a-ex2
=$\frac{p}{2}$+a+$\frac{1}{2}$x2=3+$\frac{1}{2}$x2
∵$\frac{2}{3}$<x2<2,
∴$\frac{10}{3}$<3+$\frac{1}{2}$x2<4,
故答案为:($\frac{10}{3}$,4).

点评 本题考查了抛物线与椭圆焦半径公式的应用,做题时要善于把未知转化为已知.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的通项an是二项式(1+x)n与${(1+\sqrt{x})^{2n}}$的展开式中的所有x的次数相同的各项系数之和,求数列{an}的通项及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,给出下列五个命题:①d<1;②S11>0;③S12<0;④数列{Sn}中的最大项为S11;⑤|a6|>|a7|.其中正确命题有①②⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x>0时,g(1)=0且f′(x)•g(x)+f(x)•g′(x)>0,则 不等式g(x)•f(x)>0的解集是(  )
A.(-1,0)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=f(x)的最小正周期为2,且f(-x)=f(x).当x∈[0,1]时f(x)=-x+1,函数y=f(x)图象对称轴方程x=k(k∈Z),在区间[-3,4]上,函数G(x)=f(x)-($\frac{1}{2}$)|x|的零点个数有6个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知关于x的不等式ax2+bx+4>0的解集是(-1,2),则不等式ax+b+4>0的解集是(-∞,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列等式成立的是(  )
A.${∫}_{a}^{b}$0dx=b-aB.${∫}_{a}^{b}$xdx=$\frac{1}{2}$
C.${∫}_{-1}^{1}$|x|dx=2${∫}_{0}^{1}$|x|dxD.${∫}_{a}^{b}$(x+1)dx=${∫}_{a}^{b}$xdx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对边分别为a,b,c,且$\frac{2b-c}{a}$=$\frac{cosC}{cosA}$.
(1)求角A;
(2)若△ABC的面积S=5$\sqrt{3}$,b=5,求sinB•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.复数$\frac{2+i}{2-i}$(i为虚数单位)的虚部为$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案