精英家教网 > 高中数学 > 题目详情
11.在数列{an}中,a1=$\frac{1}{2}$,an=4an-1+1(n≥2),则a4=(  )
A.13B.3C.52D.53

分析 由题意可得,数列{${a}_{n}+\frac{1}{3}$}是以$\frac{5}{6}$为首项,以4为公比的等比数列,然后结合等比数列的通项公式得答案.

解答 解:由an=4an-1+1,得${a}_{n}+\frac{1}{3}=4({a}_{n-1}+\frac{1}{3})$,
∵${a}_{1}+\frac{1}{3}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}≠0$,
∴数列{${a}_{n}+\frac{1}{3}$}是以$\frac{5}{6}$为首项,以4为公比的等比数列,
则${a}_{4}+\frac{1}{3}=\frac{5}{6}×{4}^{3}=\frac{160}{3}$,得a4=59.
故选:D.

点评 本题考查数列递推式,考查了等比关系的确定,训练了等比数列通项公式的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x)在(-∞,1)上是减函数,且函数y=f(x+1)为偶函数,设a=f(30.3),b=f(log${\;}_{\frac{1}{2}}$5),c=f(0),则a,b,c的大小关系是(  )
A.b>c>aB.c>a>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=sinx-x,g(x)=$\frac{sinx}{{e}^{x}}$.
(1)求证:当-$\frac{π}{2}$≤x≤0,有f(x)≥0;
(2)若g(x)≤ax对任意的x∈[-$\frac{π}{2}$,0]成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设等差数列{an}的前n项和为Sn,若S9=45,则a2+a4+a9=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的三视图如图所示,那么这个几何体的体积是(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求以椭圆$\frac{x^2}{5}$+$\frac{y^2}{8}$=1的焦点为顶点,求以椭圆顶点为焦点的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.与曲线$\frac{{x}^{2}}{24}$+$\frac{{y}^{2}}{49}$=1共焦点,且与曲线$\frac{{y}^{2}}{36}$-$\frac{{x}^{2}}{64}$=1共渐近线的双曲线方程为(  )
A.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=Acos(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间[0,$\frac{2π}{3}$]上具有单调性,且f(-$\frac{π}{3}$)=f(0)=-f($\frac{2π}{3}$),则ω=$\frac{6}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.
(1)设bn=an+1-an,证明{bn}是等差数列;
(2)令cn=$\frac{1}{{{a_n}+5n}}$,求{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案