精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图是A-B-C-D-E-F是一个滑滑板的轨道截面图,其中AB,DE,EF是线段,B-C-D是一抛物线弧;点C是抛物线的顶点,直线DE与抛物线在D处相切,直线L是地平线。已知点B离地面L的高度是9米,离抛物线的对称轴距离是6米,直线DE与L的夹角是.试建立直角坐标系:

(Ⅰ)求抛物线方程,并确定D点的位置;

(Ⅱ)现将抛物线弧B-C-D改造成圆弧,要求圆弧经过点B,D,且与直线DE在D处相切。试判断圆弧与地平线L的位置关系,并求该圆弧长.

(可参考数据

精确到0.1米)

解:(Ⅰ)以为原点,L所在的直线为X轴,如图所示建立直角坐标系, 则.

设抛物线的方程为,把点代人

故抛物线方程为.……3分

,根据直线DE与L的夹角是

直线L的斜率为1,由

点的坐标是.…………5分

(Ⅱ)设所求圆的圆心为.过与L垂直的直线方程是  

的中点坐标是,故中垂线方程是

由  。………9分

是直径.………11分,圆心到L的距离为,故圆弧与地平线L相离.………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案