精英家教网 > 高中数学 > 题目详情
已知曲线f(x)=x3+x2+x+3在x=-1处的切线恰好与抛物线y=2ax2相切,则过该抛物线的焦点且垂直于对称轴的直线与抛物线相交截得的线段长度为
 
分析:为求斜率,先求导函数,得到切线方程,从而可求抛物线方程,进而求出线段长.
解答:解:f′(x)=3x2+2x+1f′(-1)=2,2a=2,a=1,抛物线y=2x2,其焦点坐标为(0,
1
8
)
,所以当y=
1
8
时,x=±
1
4
,故所求线段长为
1
2

故答案为
1
2
点评:本题主要考查了利用导数研究曲线上某点切线方程,要求过曲线上一点处的切线方程,一般先求出该点的导数值(斜率),再用点斜式写出后化简,同时我们还可以据此写出该点处的法线方程,考查转化思想,属于基础题.考查了学生运用数学知识分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=
x-1
在点A(2,1)处的切线为直线l
(1)求切线l的方程;
(2)求切线l,x轴及曲线所围成的封闭图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+5,若曲线f(x)在点(1,f(1))处的切线斜率为3,且当x=
23
时,y=f(x)有极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-4,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=x3+bx2+cx在点A(-1,f(-1)),B(3,f(3))处的切线互相平行,且函数f(x)的一个极值点为x=0.
(Ⅰ)求实数b,c的值;
(Ⅱ)若函数y=f(x),x∈[-
12
,3]
的图象与直线y=m恰有三个交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案