精英家教网 > 高中数学 > 题目详情
16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量,$\overrightarrow{a}$与$\overrightarrow{b}$夹角为$\frac{π}{3}$,则|2$\overrightarrow{a}$$-\overrightarrow{b}$|=$\sqrt{3}$.

分析 首先利用向量的平方与其模长平方相等,由已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的数量积和模长得到所求的平方,然后开方求值.

解答 解:由已知得到向量$\overrightarrow{a}$,$\overrightarrow{b}$的数量积为$\overrightarrow{a}•\overrightarrow{b}$=cos$\frac{π}{3}$=$\frac{1}{2}$,
所以|2$\overrightarrow{a}$$-\overrightarrow{b}$|2=4${\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=4-2+1=3,所以|2$\overrightarrow{a}$$-\overrightarrow{b}$|=$\sqrt{3}$;
故答案为:$\sqrt{3}$

点评 本题考查了平面向量模长的计算;利用数量积公式,借助于向量的模长平方与向量平方相等得到转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=cos(2x-\frac{π}{3})-2\sqrt{3}$sinxcosx.
(1)求f(x)的最小值正周期、最大值及取得最大值时x的值;
(2)讨论f(x)在区间[0,π]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=$\frac{{x}^{3}}{3}$-$\frac{a}{2}$x2+x+1在区间($\frac{1}{2}$,3)上单调递减,则实数a的取值范围是[$\frac{10}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知一个五次多项式为f(x)=5x5-4x4-3x3+2x2+x+1,利用秦九韶算法计算f(2)的值时,可把多项式改写成
f(x)=((((5x-4)x-3)x+2)x+l)x+l,按照从内到外的顺序,依次计算:v0=5,v1=5×2-4=6,v2=6×2-3=9,v3=9×2+2=20,则v4的值为(  )
A.40B.41C.82D.83

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列4个命题:
①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;
②四边形ABCD为长方形,AB=2,BC=1,O为AB中点,在长方形ABCD内随机取一点P,取得的P点到O的距离大于1的概率为1-$\frac{π}{2}$;
③把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位,可得到y=3sin2x的图象;
④已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为$\widehat{y}$=1.23x+0.08.
其中正确的命题有③④.(填上所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\sqrt{1-x}$+lg(x+2)的定义域为(  )
A.(-2,1)B.[-2,1]C.(-2,+∞)D.(-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设O为△ABC的外心,且5$\overrightarrow{OA}+12\overrightarrow{OB}+13\overrightarrow{OC}=\overrightarrow{0}$,则△ABC的内角C的值为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A,B,C的对边分别为a,b,c,已知bsinA=2csinB,b=2$\sqrt{6}$,cosA=$\frac{\sqrt{6}}{4}$.
(Ⅰ)求c;
(Ⅱ)求cos(2A+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求证:函数f(x)=$\left\{\begin{array}{l}{x(2-x),(x≥0)}\\{-x(2+x),(x<0)}\end{array}\right.$是偶函数.

查看答案和解析>>

同步练习册答案