精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=cos(2x-\frac{π}{3})-2\sqrt{3}$sinxcosx.
(1)求f(x)的最小值正周期、最大值及取得最大值时x的值;
(2)讨论f(x)在区间[0,π]上的单调性.

分析 (1)化简函数f(x)为余弦型函数,求出f(x)的最小正周期和最大值,
以及f(x)取最大值时x的值;
(2)由余弦函数的单调性求出f(x)的增区间,
求出f(x)在[0,π]上的增区间和减区间.

解答 解:(1)函数$f(x)=cos(2x-\frac{π}{3})-2\sqrt{3}$sinxcosx
=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x-$\sqrt{3}$sin2x
=$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x
=cos(2x+$\frac{π}{3}$),
所以f(x)的最小正周期为T=π,最大值为1,
当且仅当$2x+\frac{π}{3}=2kπ$,即$x=kπ-\frac{π}{6},k∈Z$时取最大值;
(2)由2kπ-π≤2x+$\frac{π}{3}$≤2kπ,k∈Z;
得kπ-$\frac{2π}{3}$≤x≤kπ-$\frac{π}{6}$,k∈Z;
∴f(x)的增区间是[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$],k∈Z;
当k=1时,f(x)在[0,π]上的增区间为[$\frac{π}{3}$,$\frac{5π}{6}$];
在[0,π]上的减区间为[0,$\frac{π}{3}$]和[$\frac{5π}{6}$,π];
∴f(x)在$[\frac{π}{3},\frac{5π}{6}]$上单调递增,在$[0,\frac{π}{3}]$和$[\frac{5π}{6},π]$上单调递减.

点评 本题考查了三角函数的图象与性质的应用问题,也考查了三角恒等变换问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=|$\overrightarrow{b}$|且$\overrightarrow{a}$⊥($\overrightarrow{a}$$-2\overrightarrow{b}$),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$\overrightarrow a=(1,y)$,$\overrightarrow b=(\frac{1}{2},sin(2x-\frac{π}{6}))$且$\overrightarrow a$∥$\overrightarrow b$,设函数y=f(x)
(Ⅰ)求函数y=f(x)的对称轴方程及单调递减区间;
(Ⅱ)若$x∈[{0,\frac{2π}{3}}]$,求函数y=f(x)的最大值和最小值并写出函数取最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a>b>1,0<c<1,则(  )
A.ac<bcB.abc<bacC.logac<logbcD.alogbc<blogac

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,化简:$\frac{cosA}{sinBsinC}$+$\frac{cosB}{sinCsinA}$+$\frac{cosC}{sinAsinB}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=2{sin^2}(\frac{π}{4}+x)-\sqrt{3}cos2x-1,x∈{R}$.
(1)若函数h(x)=f(x+t)的图象关于点$(-\frac{π}{6},0)$对称,且t∈(0,π),求t的值.
(2)设$p:x∈[\frac{π}{4},\frac{π}{2}],q:|f(x)-m|<3.若p是q$的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin2x+2sinxcosx+3cos2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}{lnx\\;(x>0)}\\{(\frac{1}{2})^{x}\\;(x≤0)}\end{array}\right.$,则函数y=2[f(x)]2-3f(x)+1的零点个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量,$\overrightarrow{a}$与$\overrightarrow{b}$夹角为$\frac{π}{3}$,则|2$\overrightarrow{a}$$-\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案