分析 首先对三角函数式通分,然后利用倍角公式以及两角和与差的三角函数公式化简即可.
解答 解:$\frac{cosA}{sinBsinC}$+$\frac{cosB}{sinCsinA}$+$\frac{cosC}{sinAsinB}$
=$\frac{cosBsinB+coAssinA+cosCsinC}{sinAsinBsinC}$
=$\frac{sin2A+sin2B+sin2C}{2sinAsinBsinC}$
=$\frac{2sin(A+B)cos(A-B)-sin(2A+2B)}{2sinAsinBsinC}$
=$\frac{2sin(A+B)cos(A-B)-2sin(A+B)cos(A+B)}{2sinAsinBsinC}$
=$\frac{cos(A-B)-cos(A+B)}{sinAsinB}$=$\frac{2sinAsinB}{sinAsinB}$
=2;
故答案为:2.
点评 本题考查了三角函数式的化简;充分利用倍角公式以及两角和与差的三角函数公式.
科目:高中数学 来源: 题型:选择题
| A. | 9种 | B. | 10种 | C. | 12种 | D. | 24种 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{π}{6}$],[$\frac{2π}{3}$,π] | B. | [$\frac{π}{6}$,$\frac{2π}{3}$] | C. | [0,$\frac{π}{12}$],[$\frac{7π}{12}$,π] | D. | [$\frac{π}{12}$,$\frac{7π}{12}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A>1 000和n=n+1 | B. | A>1 000和n=n+2 | C. | A≤1 000和n=n+1 | D. | A≤1 000和n=n+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com