精英家教网 > 高中数学 > 题目详情
1.在△ABC中,化简:$\frac{cosA}{sinBsinC}$+$\frac{cosB}{sinCsinA}$+$\frac{cosC}{sinAsinB}$=2.

分析 首先对三角函数式通分,然后利用倍角公式以及两角和与差的三角函数公式化简即可.

解答 解:$\frac{cosA}{sinBsinC}$+$\frac{cosB}{sinCsinA}$+$\frac{cosC}{sinAsinB}$
=$\frac{cosBsinB+coAssinA+cosCsinC}{sinAsinBsinC}$
=$\frac{sin2A+sin2B+sin2C}{2sinAsinBsinC}$
=$\frac{2sin(A+B)cos(A-B)-sin(2A+2B)}{2sinAsinBsinC}$
=$\frac{2sin(A+B)cos(A-B)-2sin(A+B)cos(A+B)}{2sinAsinBsinC}$
=$\frac{cos(A-B)-cos(A+B)}{sinAsinB}$=$\frac{2sinAsinB}{sinAsinB}$
=2;
故答案为:2.

点评 本题考查了三角函数式的化简;充分利用倍角公式以及两角和与差的三角函数公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=12x-x3在区间[-3,3]上的最大值为(  )
A.-16B.-9C.9D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校从高中三个年级中各选取1名学生干部参加某项校外活动,若高一、高二、高三年级分别有2,3,4个学生干部备选,则不同选法有(  )
A.9种B.10种C.12种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在R上定义运算$|\begin{array}{l}{a}&{c}\\{b}&{d}\end{array}|$=ad-bc,若f(x)=$|\begin{array}{l}{2sinx}&{2sinx}\\{\sqrt{3}sinx}&{cosx}\end{array}|$,x∈[0,π],则f(x)的递增区间为(  )
A.[0,$\frac{π}{6}$],[$\frac{2π}{3}$,π]B.[$\frac{π}{6}$,$\frac{2π}{3}$]C.[0,$\frac{π}{12}$],[$\frac{7π}{12}$,π]D.[$\frac{π}{12}$,$\frac{7π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有(  )
A.36种B.24种C.18种D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=cos(2x-\frac{π}{3})-2\sqrt{3}$sinxcosx.
(1)求f(x)的最小值正周期、最大值及取得最大值时x的值;
(2)讨论f(x)在区间[0,π]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=f(x)存在反函数y=f-1(x),且f(x)+f(-x)=2016,则f-1(x)+f-1(2016-x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在两个空白框中,可以分别填入(  )
A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列4个命题:
①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;
②四边形ABCD为长方形,AB=2,BC=1,O为AB中点,在长方形ABCD内随机取一点P,取得的P点到O的距离大于1的概率为1-$\frac{π}{2}$;
③把函数y=3sin(2x+$\frac{π}{3}$)的图象向右平移$\frac{π}{6}$个单位,可得到y=3sin2x的图象;
④已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为$\widehat{y}$=1.23x+0.08.
其中正确的命题有③④.(填上所有正确命题的编号)

查看答案和解析>>

同步练习册答案