分析 (Ⅰ)求出f(x)的解析式,根据三角函数的性质求出函数的对称轴和递减区间即可;
(Ⅱ)根据x的范围,求出2x-$\frac{π}{6}$的范围,结合三角函数的性质求出函数的最大值和最小值即可.
解答 解:(Ⅰ)∵$\overrightarrow a=(1,y)$,$\overrightarrow b=(\frac{1}{2},sin(2x-\frac{π}{6}))$,且$\overrightarrow a$∥$\overrightarrow b$,
∴$1•sin(2x-\frac{π}{6})-\frac{1}{2}•y=0$----------------------------------------------------------------------(2分)
∴$y=f(x)=2sin(2x-\frac{π}{6})$---------------------------------------------------------------------(3分)
由$2x-\frac{π}{6}=kπ+\frac{π}{2}$,得x=$\frac{kπ}{2}+\frac{π}{3}$.
由$2kπ+\frac{π}{2}≤2x-\frac{π}{6}≤2kπ+\frac{3π}{2}$,得$kπ+\frac{π}{3}≤x≤kπ+\frac{5π}{6}$--------------------------(5分)
∴$f(x)的对称轴方程是直线x=\frac{kπ}{2}+\frac{π}{3}(k∈Z)$,
函数在[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],(k∈z)递减----------------------------------------(6分)
(Ⅱ)∵$x∈[{0,\frac{2π}{3}}]$∴$2x-\frac{π}{6}∈[{-\frac{π}{6},\frac{7π}{6}}]$,
∴$sin(2x-\frac{π}{6})∈[{-\frac{1}{2},1}]∴f(x)=2sin(2x-\frac{π}{6})∈[{-1,2}]$---------------------------(8分)
∴$当2x-\frac{π}{6}=\frac{π}{2}即x=\frac{π}{3}时,f(x)取到最大值2$;
$当2x-\frac{π}{6}=-\frac{π}{6}或\frac{7π}{6}即x=0或\frac{2π}{3}时,f(x)取到最小值-1$-----------------(10分)
点评 本题考查了函数的单调性、最值问题,考查三角函数的性质,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{9\sqrt{3}}}{2}$ | B. | $16+\frac{{9\sqrt{3}}}{2}$ | C. | $18+\frac{{9\sqrt{3}}}{2}$ | D. | $\frac{{9\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9种 | B. | 10种 | C. | 12种 | D. | 24种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{π}{6}$],[$\frac{2π}{3}$,π] | B. | [$\frac{π}{6}$,$\frac{2π}{3}$] | C. | [0,$\frac{π}{12}$],[$\frac{7π}{12}$,π] | D. | [$\frac{π}{12}$,$\frac{7π}{12}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com