精英家教网 > 高中数学 > 题目详情
一条线段AB的两端点A,B和平面α的距离分别是30cm和50cm,P为线段AB上一点,且PA:PB=3:7,则P到平面α的距离为(  )
A.36cmB.6cmC.36cm或6cmD.以上都不对
若A,B在平面α的同侧
∵PA:PB=3:7,
A,B和平面α的距离分别是30cm和50cm,
∴P点到平面α的距离为
7
10
×30+
3
10
×50
=36cm
若A,B在平面α的异侧
∵PA:PB=3:7,
A,B和平面α的距离分别是30cm和50cm,
∴P点到平面α的距离为
7
10
×30-
3
10
×50
=6cm
故P到平面α的距离为36cm或6cm
故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱锥P-ABC中,PAPBPC与底面ABC成相等的角,∠CAB=90°,AC=AB,DBC的中点,E点在PB上,PC∥截面EAD.

(1)求证:平面PBC⊥底面ABC.
(2)若AB=PB,求AE与底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于平面和共面的直线m、n,下列命题中真命题是 (        )
A.若mmn,则nB.若mn,则mn
C.若mn,则mnD.若mn所成的角相等,则nm

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中,点E在棱CD上.
(1)求证:EB1⊥AD1
(2)若E是CD中点,求EB1与平面AD1E所成的角;
(3)设M在BB1上,且
BM
MB1
=
2
3
,是否存在点E,使平面AD1E⊥平面AME,若存在,指出点E的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M,N分别是AB,PC的中点.
(1)求二面角P-CD-B的大小;
(2)求证:平面MND⊥平面PCD;
(3)求点P到平面MND的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥S-ABC中,底面ABC是边长为4的正三角形,侧面SAC⊥底面ABC,SA=SC=2
3
,M,N分别为AB,SB的中点.
(Ⅰ)求证:AC⊥SB;
(Ⅱ)求二面角N-CM-B的大小的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.
(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,若的中点,则直线垂直于(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案