精英家教网 > 高中数学 > 题目详情

方程sinx+cosx=-1在[0,π]内的解为________.

π
分析:利用两角和的正弦公式化简方程得 sin(x+)=-,由 ≤x+,得到 x+=,从而解得 x=π.
解答:方程sinx+cosx=-1 即 sin(x+)=-1,sin(x+)=-
又 0≤x≤π,∴≤x+,∴x+=,x=π,
故答案为π.
点评:本题考查两角和的正弦公式的应用,以及根据三角函数值求角的大小的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若方程|sinx|+cos|x|-a=0,在[-π,π]上有4个解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程
|sinx|
x
=k(k>0)有且仅有两个不同的实数解θ,φ(θ>φ),则以下有关两根关系的结论正确的是(  )
A、sinφ=φcosθ
B、sinφ=-φcosθ
C、cosφ=θsinθ
D、sinθ=-θsinφ

查看答案和解析>>

科目:高中数学 来源: 题型:

若有实数a,使得方程sinx=
a
2
在[0,2π)上有两个不相等的实数根x1,x2,则cos(x1+x2)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若方程|sinx|+cos|x|-a=0,在[-π,π]上有4个解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学复习(第3章 三角函数与三角恒等变换):3.3 三角函数的图象(解析版) 题型:解答题

若方程|sinx|+cos|x|-a=0,在[-π,π]上有4个解,求a的取值范围.

查看答案和解析>>

同步练习册答案