精英家教网 > 高中数学 > 题目详情

在△ABC中,数学公式,则内角A的取值范围是________.


分析:利用正弦定理化简,然后利用余弦定理推出A的余弦值的范围,然后推出结果.
解答:由正弦定理可知a=2RsinA,b=2RsinB,c=2RsinC

∴b2+c2bc+a2,又b2+c2-a2=2bccosA
∴cosA≥
∴0<A≤
∴A的取值范围是(0,]
故答案为:(0,].
点评:本题主要考查了正弦定理和余弦定理的应用.应能熟练应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果函数f(x)在区间D上是“凸函数”,则对于区间D内任意的x1,x2,…,xn,有
f(x1)+f(x2)+…+f(xn)
n
≤f(
x1+x2+…+xn
n
)成立.已知函数y=sinx在区间[0,π]上是“凸函数”,则在△ABC中,sinA+sinB+sinC的最大值是(  )
A、
1
2
B、
3
2
C、
3
2
D、
3
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC内作射线AM交BC于点M,则BM<1的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①?x∈R,ex≥ex;②?x0∈(1,2),使得(
x
2
0
-3x0+2)ex0+3x0-4=0
成立;③若ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取得的点到O距离大小1的概率为1-
π
2
;④在△ABC中,若tanA+tanB+tanC>0,则△ABC是锐角三角形,其中正确命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

定义f(M)=(m,n,p),其中M是△ABC内一点,m,n,p分别是△MBC,△MCA,△MAB的面积,已知在△ABC中,
AB
AC
=2
3
,∠BAC=30°,f(M)=(
1
2
,x,y)
,则
1
x
+
4
y
的最小值是
18
18

查看答案和解析>>

科目:高中数学 来源: 题型:

下列4个命题:
①已知函数y=2sin(x+?)(0<?<π)的图象如图所示,则φ=
π
6
5
6
π;
②在△ABC中,∠A>∠B是sinA>sinB的充要条件;
③定义域为R的奇函数f(x)满足f(1+x)=-f(x),则f(x)的图象关于点(
1
2
,0)
对称;
④对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0,则f(x)在(a,b)内至多有一个零点;其中正确命题序号

查看答案和解析>>

同步练习册答案