精英家教网 > 高中数学 > 题目详情
已知平面区域
x≥0
y≥0
x+2y-4≤0
被圆C及其内部所覆盖.
(1)当圆C的面积最小时,求圆C的方程;
(2)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.
分析:(1)由约束条件得出其可行域是直角三角形及其内部,被圆C及其内部所覆盖,覆盖它的且面积最小的圆是其外接圆,求出即可;
(2)设出直线l的方程,直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,则圆心C到直线l的距离是
2
2
r
,利用点到直线的距离公式即可求出.
解答:解:(1)由题意知此平面区域表示的是以O(0,0),P(4,0),Q(0,2)构成的三角形及其内部,且△OPQ是直角三角形,
由于覆盖它的且面积最小的圆是其外接圆,∴圆心是Rt△OPQ的斜边PQ的中点C(2,1),半径r=|OC|=
22+12
=
5

∴圆C的方程是(x-2)2+(y-1)2=5.
(2)设直线l的方程是:y=x+b.∵CA⊥CB,∴圆心C到直线l的距离是
2
2
r
=
10
2

|2-1+b|
2
=
10
2
,解之得,b=-1±
5

∴直线l的方程是:y=x-1±
5
点评:正确由约束条件得出其可行域是直角三角形及其内部,覆盖它的且面积最小的圆是其外接圆,进而即可得出其圆的方程.
熟练掌握直线与圆相交问题的解题模式及点到直线的公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面区域
x≥0
y≥0
x+2y-4≤0
恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖.
(1)试求圆C的方程.
(2)若斜率为1的直线l与圆C交于不同两点A,B满足CA⊥CB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面区域
x≥0
y≥0
x+2y-4≤0
恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,设该圆的圆心为点C.
(1)试求圆C的方程.
(2)若斜率为1的直线l与圆C交于不同两点A,B,且CA⊥CB,求直线l的方程.
(3)求直线y=k(x-9)与圆C在第一象限部分的公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面区域
x≥0
y≥0
x+2y-4≤0
恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为
(x-2)2+(y-1)2=5
(x-2)2+(y-1)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面区域
x≥0
y≥0
x+2y-4≤0
  恰好被面积最小的⊙C:(x-a)2+(y-b)2=r2及其内部所覆盖.
(1)试求⊙C的方程.
(2)若斜率为1的直线l与⊙C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.

查看答案和解析>>

同步练习册答案