精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
中,角的对边分别为的面积为
(Ⅰ)求的值;
(Ⅱ)求的值.

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)由已知
由余弦定理可得,从而可知    
(Ⅱ)由(Ⅰ)知,由于是三角形的内角,故
所以
考点:三角形的面积公式;余弦定理;同角三角函数关系式;和差公式。
点评:本题直接考查三角形的面积公式及余弦定理,属于基础题型。我们要把公式记准、记熟!

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,(Ⅰ)确定函数的单调增区间;(Ⅱ)当函数取得最大值时,求自变量的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数

(Ⅰ)求函数的对称轴方程;
(Ⅱ)画出在区间上的图象,并求上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

关于的方程=0在开区间上.(1)若方程有解,求实数的取值范围.(2)若方程有两个不等实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数
(1)求函数的最小正周期,最大值及取最大值时相应的值;
(2)如果,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(1)求函数的最小正周期和图像的对称轴方程;
(2)若时,的最小值为,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)化简

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分8分)已知函数
(1)求的振幅和最小正周期;
(2)求当时,函数的值域;
(3)当时,求的单调递减区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
(1) 已知角的终边上有一点,求的值;
(2) 已知的值。

查看答案和解析>>

同步练习册答案