精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为-
1
4
,设动点M的轨迹为曲线C.
(I)求曲线C的方程;
(II )过定点T(-1,0)的动直线l与曲线C交于P,Q两点,是否存在定点S(s,0),使得
SP
SQ
为定值,若存在求出s的值;若不存在请说明理由.
(I)设M点坐标为(x,y)
∵定点A(-2,0)、B(2,0),直线MA与直线MB的斜率之积为-
1
4

y
x+2
×
y
x-2
=-
1
4

x2
4
+y2=1(x≠±2)

∴曲线C的方程为
x2
4
+y2=1(x≠±2)

(II )当动直线l的斜率存在时,设动直线l的方程为y=k(x+1)(k≠0)
y=k(x+1)
x2
4
+y2=1
,可得(1+4k2)x2+8k2x+4k2-4=0
设P(x1,y1),Q(x2,y2),∴
x1+x2=-
8k2
1+4k2
x1x2=
4k2-4
1+4k2

SP
=(x1-s,y1)
SQ
=(x2-s,y2)

SP
SQ
=
(s2-4)(1+
4s2+8s+1
s2-4
×k2)
1+4k2

若存在定点S(s,0),使得
SP
SQ
为定值,则
4s2+8s+1
s2-4
=4
∴s=-
17
8
,此时定值为
33
64

当动直线l的斜率不存在时,P(-1,
3
2
),Q(-1,-
3
2
),可知s=-
17
8
时,
SP
SQ
=
33
64

综上知,存在定点S(-
17
8
,0),使得
SP
SQ
为定值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步练习册答案