精英家教网 > 高中数学 > 题目详情

如图,在四面体ABCD中,平面EFGH分别平行于棱CD、AB,E、F、G、H分别在BD、BC、AC、AD上,且CD=a,AB=b,CD⊥AB.

(1)求证:四边形EFGH是矩形.

(2)设,问为何值时,四边形EFGH的面积最大?

 


解: 建立如图所示的空间直角坐标系,并设则A(0,0,0) B(0,2,0)

C(0,2,1)  D(0,0,2)  E(2,0,0)…

(Ⅰ),所以,从而得;………6分

(Ⅱ)设是平面的法向量,则由

, 可以取.显然,

为平面的法向量.…

设二面角的平面角为

则此二面角的余弦值…………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H分别为DE,AF的中点,将△ABC沿DE,EF,DF折成正四面体P-DEF,则四面体中异面直线PG与DH所成的角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,BC⊥面ACD,DA=DC,E、F分别为AB、AC的中点.
(1)求证:直线EF∥面BCD;
(2)求证:面DEF⊥面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•武汉模拟)如图,在四面体A-BCD中,AB=AD=
2
,BD=2,DC=1
,且BD⊥DC,二面角A-BD-C大小为60°.
(1)求证:平面ABC上平面BCD;
(2)求直线CD与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四面体ABCD中,DA=DB=DC=1,且DA,DB,DC两两互相垂直,点O是△ABC的中心,将△DAO绕直线DO旋转一周,则在旋转过程中,直线DA与BC所成角的余弦值的取值范围是(  )
A、[0, 
6
3
]
B、[0, 
3
2
]
C、[0, 
2
2
]
D、[0, 
3
3
]

查看答案和解析>>

同步练习册答案