精英家教网 > 高中数学 > 题目详情
12.在△ABC中,角A、B、C所对的边分别为a,b,c,若a=3,b=4,sinB=$\frac{2}{3}$,则角A等于$\frac{π}{6}$.

分析 由已知利用正弦定理可求sinA,利用大边对大角可得A为锐角,从而可求A的值.

解答 解:∵a=3,b=4,sinB=$\frac{2}{3}$,
∴由正弦定理可得:sinA=$\frac{asinB}{b}$=$\frac{3×\frac{2}{3}}{4}$=$\frac{1}{2}$,
∵a<b,
∴A为锐角,可得A=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题主要考查了正弦定理,大边对大角等知识在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在递增的等比数列{an}中,已知a1=1,且$\frac{{a}_{3}+{a}_{4}}{{a}_{1}+{a}_{2}}$=4,则S5的值是31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校一次运动会中,高二(1)班要从甲、乙等6名水平相当的同学中随机选出4人参加4×100米接力比赛.
(1)求甲和乙中至少有一人被选中的概率;
(2)现将选中的4人按照抽签结果决定接力棒次1,2,3,4.若甲乙同时被选中,求甲乙两人棒次之差的绝对值X的分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为$\sqrt{2}$,且过点(4,-$\sqrt{10}$).点M(3,m)在双曲线上.
(1)求双曲线方程;
(2)求△F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合M={(x,y)||x|≤2,|y|≤1},在集合M内随机取出一个元素(x,y).
(1)求以(x,y)为坐标的点落在圆x2+y2=1内的概率.
(2)若x,y都是整数,求以(x,y)为坐标的点落在圆x2+y2=1内或该圆上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知fn(x)=(1+x)n
(1)若f2016(x)=a0+a1x+a2x2+…+a2015x2015+a2016x2016,求a1+a2+…+a2015+a2016的值;
(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x|x2+2x≤0},集合B={0,1,2},则A∩B={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,平面ABCD⊥平BCEF,且四边形ABC为矩形,四边形BCEF为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.
(Ⅰ)求证:AF∥平面CDE;
(Ⅱ)求直线BE与平面ADE所成角的余弦值;
(Ⅲ)求点B到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,棱长为a的正方体,N是棱A1D1的中点;
(I)求直线AN与平面BB1D1D所成角的大小;
(Ⅱ)求B1到平面ANC的距离.

查看答案和解析>>

同步练习册答案