精英家教网 > 高中数学 > 题目详情
10.如图,一个直角三角形两条直角边分别为3cm和4cm,以斜边AB所在直线为轴旋转一周得到一个几何体,求这个几何体的表面积与体积.

分析 由已知中,AC=3,BC=4,AB=5,可得三角形ABC为直角三角形,我们可以判断出以斜边AB为轴旋转一周,所得旋转体的形状是AB边的高CO为底面半径的两个圆锥组成的组合体,计算出底面半径及两个圆锥高的和,代入圆锥体积公式,即可求出旋转体的体积;又由该几何体的表面积是两个圆锥的侧面积之和,分别计算出两个圆锥的母线长,代入圆锥侧面积公式,即可得到答案.

解答 解:∵在三角形ABC中,若AC=3,BC=4,AB=5,
∴三角形ABC为直角三角形,
如图以斜边AB为轴旋转一周,得旋转体是以AB边的高CO为底面半径的两个圆锥组成的组合体

∵AC=3,BC=4,AB=5,
∴CO=$\frac{AC•BC}{AB}$=$\frac{12}{5}$,
故此旋转体的体积V=$\frac{1}{3}$•πr2•h=$\frac{1}{3}$•π•CO2•AB=$\frac{48π}{5}$π;
(2)又∵AC=3,BC=4,
故此旋转体的表面积
S=πr•(l+l′)=2πCO•(AC+BC)=$\frac{84π}{5}$

点评 本题考查的知识点是旋转体,圆锥的体积和表面积,其中根据已知判断出旋转所得旋转体的形状及底面半径,高,母线长等关键几何量,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=x3+x,x∈R,若0<θ<$\frac{π}{2}$时,不等式f(msinθ)+f(1-m)>0恒成立.则实数m的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设E,F分别是Rt△ABC的斜边BC上的两个三等分点,已知AB=6,AC=3,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=log${\;}_{\frac{1}{2}}$(-x2+2x)的单调递增区间是 (  )
A.(-∞,1)B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正四棱锥P-ABCD的底面边长及侧棱长均为13,M、N分别是PA、BD上的点,且PM:MA=BN:ND=5:8.
(1)求证:直线MN∥平面PBC;
(2)求正四棱锥P-ABCD的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+x-1.
(1)求f(2),f($\frac{1}{x}$);
(2)若f(x)=5,求x的值;
(3)若f(x)≥f(a)对一切x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线l1:y=k1x+1,l2:y=k2x-1,若l2与l2交点在椭圆2x2+y2=1上,则k1•k2=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.二次函数f(x)的最小值为-2,且f(0)=f(2)=1,则f(3)=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设全集U=Z,集合M={x|x=2k,k∈Z},P={x|x=2k+1,k∈Z},给定下列关系式:①M⊆P;②CuM=CuP;③CuM=P;④CuP=M.其中正确的式子有2个.

查看答案和解析>>

同步练习册答案