精英家教网 > 高中数学 > 题目详情
2.双曲线与椭圆4x2+y2=1有相的焦点,它的一条渐近线方程是y=$\sqrt{2}$x,则这双曲线的方程是4y2-2x2=1.

分析 将椭圆化成标准方程,可得焦点坐标为(0,±$\frac{\sqrt{3}}{2}$),因此设双曲线方程为$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{b}^{2}}=1$,(a>0,b>0),由c2=a2+b2,根据渐近线方程建立关于a的等式,算出a和b的值即可得到该双曲线的方程.

解答 解:由椭圆方程为:$\frac{{x}^{2}}{\frac{1}{4}}+{y}^{2}=1$,焦点在y轴上,焦点坐标为(0,±$\frac{\sqrt{3}}{2}$),
设双曲线方程为:$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{b}^{2}}=1$,(a>0,b>0)
渐近线方程y=±$\frac{a}{b}$x,
∴a=$\sqrt{2}$b,
∵c2=a2+b2
∴$\frac{3}{4}$=2b2+b2,整理得:b2=$\frac{1}{4}$,a2=$\frac{1}{2}$,
∴$\frac{{y}^{2}}{\frac{1}{4}}-\frac{{x}^{2}}{\frac{1}{2}}=1$,
整理得:4y2-2x2=1,
故答案为:4y2-2x2=1.

点评 本题考查双曲线的标准方程.着重考查了椭圆、双曲线的标准方程和简单几何性质等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}0,x>0\\-π,x=0\\{π^2}+1,x<0\end{array}$则f(f(f(-1)))的值等于(  )
A.π2-1B.π2+1C.D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.曲线y=x3-3x2在点(1,-2)处的切线方程为(  )
A.y=-3x+1B.y=-3x+5C.y=3x-5D.y=3x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\sqrt{\frac{x}{2-x}}$,则函数$g(x)=f(x+\frac{1}{2})+f(x-\frac{1}{2})$的定义域是[$\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$,则sinx-cosx的值为(  )
A.$\frac{7}{5}$B.-$\frac{7}{5}$C.$±\frac{7}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线一条渐近线的斜率为$\sqrt{3}$,焦点是(-4,0)、(4,0),则双曲线方程为(  )
A.$\frac{x^2}{12}-\frac{y^2}{4}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1$C.$\frac{x^2}{10}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{10}=1$1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)求垂直于直线x+3y-5=0,且过点P(-1,0)的直线的方程.
(2)求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线ax-y+1=0与连结A(2,3),B(3,2)的线段相交,则a的取值范围是$[\frac{1}{3},1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知p:?x∈R使mx2-mx+1<0成立,q:方程$\frac{x^2}{m-1}+\frac{y^2}{3-m}=1$的曲线是双曲线,若命题p∧q为假命题、命题p∨q为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案