精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1)时f(x)=log0.5(1-x),则:
①2是函数f(x)的周期;
②f(x)在(1,2)上是增函数,在(2,3)上是减函数;
③f(x)的最大值是1,最小值是0;
④当x∈(3,4)时,f(x)=log0.5(x-3).
其中所有正确命题的序号是   
【答案】分析:①利用函数周期性的定义判断.②利用函数的周期性,奇偶性和单调性的关系判断.③利用函数的单调性和周期确定函数的最值.④利用函数的周期性和奇偶性求函数的解析式.
解答:解:①因为f(x+1)=f(x-1),所以f(x+2)=f(x),所以函数是周期函数,周期为2,所以①正确.
②当x∈[0,1)时f(x)=log0.5(1-x),此时函数单调递增.因为函数为偶函数,所以函数在(-1,0)上单调递减,
所以f(x)在(1,2)上是减函数,在(2,3)上是增函数,所以②错误.
③由②知函数在x=0处取得最小值,在x=1处取得最大值,因为f(0=log0.5(1-0)=0,所以最小值为0.因为函数的最大值为f(1),但f(1)没有具体的数值,所以③错误.
④若3<x<4,则-4<-x<-3,所以0<4-x<1,所以f(x)=f(-x)=f(4-x)=log?0.5[1-(4-x)]=log?0.5(x-3),所以④正确.
故答案为:①④.
点评:本题主要考查与函数有关的命题的真假判断,要求熟练掌握函数的周期性,奇偶性和单调性的关系,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,+∞)上的增函数,如果不等式f(1-ax-x2)<f(2-a)对于任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax(a∈R).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>3,试判断f(x)在(0,1]上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1]时,f(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.

查看答案和解析>>

同步练习册答案