精英家教网 > 高中数学 > 题目详情
11.已知方程sin2x+cosx+a=0在区间[-$\frac{π}{3}$,0]上有实数解,求实数a的取值范围.

分析 化简可得a=-sin2x-cosx=(cosx-$\frac{1}{2}$)2-$\frac{5}{4}$,从而求实数a的取值范围.

解答 解:∵sin2x+cosx+a=0,
∴a=-sin2x-cosx
=cos2x-cosx-1
=(cosx-$\frac{1}{2}$)2-$\frac{5}{4}$,
∵x∈[-$\frac{π}{3}$,0],
∴cosx∈[$\frac{1}{2}$,1],
∴-$\frac{5}{4}$≤a≤-1,
故实数a的取值范围为[-$\frac{5}{4}$,-1].

点评 本题考查了三角函数的应用及配方法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知p:(5x-1)2>a2(a>0),q:2x2-3x+1>0,若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知实数x,y满足:|x-y|<1,|2x+y|<1求证:|y|<1;
(2)已知a>b>c>d,求证:$\frac{1}{a-b}$+$\frac{1}{b-c}$+$\frac{1}{c-d}$≥$\frac{9}{a-d}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=xlnx,g(x)=-x2+ax-3.
(Ⅰ) 求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ) 若存在x∈[$\frac{1}{e}$,e](e是常数,e=2.71828…)使不等式2f(x)≥g(x)成立,求实数a的取值范围;
(Ⅲ) 证明对一切x∈(0,+∞)都有lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围为(  )
A.($\frac{{e}^{2}+1}{e}$,+∞)B.(-∞,-$\frac{{e}^{2}+1}{e}$)C.(-$\frac{{e}^{2}+1}{e}$,-2)D.(2,$\frac{{e}^{2}+1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f$({\frac{1}{2}})$,c=f(3),则a,b,c的大小关系为c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若a,b是方程x2-30x+100=0的两个实根,则lga+lgb=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知空间四边形OABC,点M在线段OA上,且OM=2MA,点N为BC的中点,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{2}{3}$$\overrightarrow c$B.-$\frac{2}{3}\overrightarrow a+\frac{1}{2}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}$$\overrightarrow c$D.$\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}$$\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x)是R上的偶函数,且在(-∞,0]上是减函数,若f(a)≥f(2),则实数a的取值范围是(  )
A.(-∞,2]B.(-∞,-2]∪[2,+∞)C.[-2,+∞)D.[-2,2]

查看答案和解析>>

同步练习册答案