精英家教网 > 高中数学 > 题目详情
3、数列{n an}前n项和为Sn=n(n+1)(n+2),则an=
3n+3
分析:利用an=Sn-Sn-1 (n≥2)求解数列的通项公式即可(注意检验=1时通项是否成立).
解答:解:由题得,a1+2a2+3a3+…+(n-1)an-1+nan=n(n+1)(n+2).
当n≥2时a1+2a2+3a3+…+(n-1)an-1=(n-1)n(n+1).
作差得nan=n(n+1)(n+2)-(n-1)n(n+1)=n(3n+3)?an=3n+3.(n≥2)
又a1=s1=1×2×3=6适合上式.
所以an=3n+3.
故答案为:3n+3.
点评:本题考查了已知前n项和为Sn求数列{an}的通项公式,根据an和Sn的关系:an=Sn-Sn-1 (n≥2)求解数列的通项公式.另外,须注意公式成立的前提是n≥2,所以要验证n=1时通项是否成立,若成立则:an=Sn-Sn-1;若不成立,则通项公式为分段函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于数列有下列四个判断:
①若a,b,c,d成等比数列,则a+b,b+c,c+d也成等比数列;
②若数列{an}是等比数列,则Sn,S2n-Sn,S3n-S2n…也成等比数列;
③若数列{an}既是等差数列也是等比数列,则{an}为常数列;
④数列{an}的前n项的和为Sn,且Sn=an-1(a∈R),则{an}为等差或等比数列;
⑤数列{an}为等差数列,且公差不为零,则数列{an}中不会有am=an(m≠n).
其中正确命题的序号是
②③④⑤
②③④⑤
.(请将正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江苏二模)已知各项均为正数的等差数列{an}的公差d不等于0,设a1,a3,ak是公比为q的等比数列{bn}的前三项,
(1)若k=7,a1=2;
(i)求数列{anbn}的前n项和Tn
(ii)将数列{an}和{bn}的相同的项去掉,剩下的项依次构成新的数列{cn},设其前n项和为Sn,求S2n-n-1-22n-1+3•2n-1(n≥2,n∈N*)的值
(2)若存在m>k,m∈N*使得a1,a3,ak,am成等比数列,求证k为奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

数列{n an}前n项和为Sn=n(n+1)(n+2),则an=________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

关于数列有下列四个判断:
①若a,b,c,d成等比数列,则a+b,b+c,c+d也成等比数列;
②若数列{an}是等比数列,则Sn,S2n-Sn,S3n-S2n…也成等比数列;
③若数列{an}既是等差数列也是等比数列,则{an}为常数列;
④数列{an}的前n项的和为Sn,且数学公式,则{an}为等差或等比数列;
⑤数列{an}为等差数列,且公差不为零,则数列{an}中不会有am=an(m≠n).
其中正确命题的序号是________.(请将正确命题的序号都填上)

查看答案和解析>>

同步练习册答案