【题目】已知函数f(x)= (a∈R).
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有两个公共点,求实数a的取值范围.
【答案】(Ⅰ)见解析(Ⅱ)(1,e2-2].
【解析】试题分析:(1)f(x)的定义域为(0,+∞),f′(x)=.由f′(x)=0,
得x=e1-a,可求得单调区间与极值。(2)由于f(x)=1在区间(0,e2]上有两上零点,所以要考虑x=e1-a是否在区间(0,e2]上进行分类讨论。
试题解析:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=.
令f′(x)=0,得x=e1-a,
当x∈(0,e1-a)时,f′(x)>0,f(x)是增函数;
当x∈(e1-a,+∞)时,f′(x)<0,f(x)是减函数,
所以函数f(x)的单调增区间为(0,e1-a);单调减区间为(e1-a,+∞),f(x)极大值=f(e1-a)=ea-1,无极小值.
(Ⅱ)(ⅰ)当e1-a<e2,即a>-1时,由(Ⅰ)知f(x)在区间(0,e1-a)上是增函数,
在区间(e1-a,e2]上是减函数,f(x)max=f(e1-a)=ea-1.
又f(e-a)=0,f(e2)=,所以函数f(x)的图象与g(x)=1的图象在(0,e2]上有两个公共点,等价于≤1<ea-1,解得1<a≤e2-2(满足a>-1).
(ⅱ)当e1-a≥e2,即a≤-1时,f(x)在(0,e2]上是增函数,
所以函数f(x)的图象与函数g(x)的图象至多有一个公共点,故不满足题意.
综上,实数a的取值范围是(1,e2-2].
科目:高中数学 来源: 题型:
【题目】已知椭圆C的对称中心为原点O,焦点在x轴上,左,右焦点分别为F1,F2,上顶点和右顶点分别为B,A,线段AB的中点为D,且,△AOB的面积为.
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于M,N两点,若△MF2N的面积为,求以F2为圆心且与直线l相切的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥A-BCDE中,侧棱AD⊥底面BCDE,底面BCDE是直角梯形,DE∥BC,BC⊥CD,BC=2AD=2DC=2DE=4,H,I分别是AD,AE的中点.
(Ⅰ)在AB上求作一点F,BC上求作一点G,使得平面FGI∥平面ACD;
(Ⅱ)求平面CHI将四棱锥A-BCDE分成的两部分的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln x+ax-+b.
(1)若函数g(x)=f(x)+为减函数,求实数a的取值范围;
(2)若f(x)≤0恒成立,证明:a≤1-b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)经过点(,1),以原点为圆心、椭圆短半轴长为半径的圆经过椭圆的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点(-1,0)的直线l与椭圆C相交于A,B两点,试问在x轴上是否存在一个定点M,使得恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共12分)
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.
(1)求证:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地棚户区改造建筑用地平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形ABCD是原棚户区建筑用地,测量可知边界AB=AD=4万米,BC=6万米,CD=2万米.
(1)请计算原棚户区建筑用地ABCD的面积及AC的长;
(2)因地理条件的限制,边界AD,DC不能变更,而边界AB,BC可以调整,为了提高棚户区建筑用地的利用率,请在上设计一点P,使得棚户区改造后的新建筑用地APCD的面积最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,设圆:=4 cos 与直线l:= (∈R)交于A,B两点.
(Ⅰ)求以AB为直径的圆的极坐标方程;
(Ⅱ)在圆任取一点,在圆上任取一点,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com