精英家教网 > 高中数学 > 题目详情

abc∈R,证明:a2+ac+c2+3b(a+b+c)≥0,并指出等号成立的   条件.

证明:左边整理成关于a的二次式

f(a)=a2+(c+3b)a+c2+3b2+3bc.

f(a)=0的判别式,得

Δ=(c+3b)2-4(c2+3b2+3bc)=-3(c2+b2+2bc)=-3(b+c)2≤0,

f(a)≥0成立.

Δ=0时,等号成立,即b+c=0,这时,

f(a)=a2+ac+c2+3ab=a2+2ab+b2=(a+b)2=0.

a=-b=c.


解析:

在比较法、综合法无效时,如果能整理成关于某函数的二次式f(a)>0或f(a)<0时,可考虑用判别式法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点M(0,1)N(0,-1),平面上动点P(x,y)满足|
NM
|•|
MP
|+
MN
NP
=0

(Ⅰ)求动点P(x,y)的轨迹C的方程;
(Ⅱ)设Q(0,m),R(0,-m)(m≠0)是y轴上两点,过Q作直线与曲线C交于A、B两点,试证:直线RA、RB与y轴所成的锐角相等;
(Ⅲ).在Ⅱ的条件中,若m<0,直线AB的斜率为1,求△RAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点分别为F1(-c,0)、F2(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)设E为“黄金椭圆”,问:是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-2
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)设E为“黄金椭圆”,点M是△PF1F2的内心,连接PM并延长交F1F2于N,求
|PM|
|PN|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c∈R+,试证

.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省信阳市新县高中高二(上)12月月考数学试卷(理科)(解析版) 题型:解答题

定义:离心率的椭圆为“黄金椭圆”,已知椭圆的两个焦点分别为F1(-c,0)、F2(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)设E为“黄金椭圆”,问:是否存在过点F2、P的直线l,使l与y轴的交点R满足?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)设E为“黄金椭圆”,点M是△PF1F2的内心,连接PM并延长交F1F2于N,求的值.

查看答案和解析>>

科目:高中数学 来源:2010年北京市顺义区高考数学二模试卷(理科)(解析版) 题型:解答题

已知两点M(0,1)N(0,-1),平面上动点P(x,y)满足
(Ⅰ)求动点P(x,y)的轨迹C的方程;
(Ⅱ)设Q(0,m),R(0,-m)(m≠0)是y轴上两点,过Q作直线与曲线C交于A、B两点,试证:直线RA、RB与y轴所成的锐角相等;
(Ⅲ).在Ⅱ的条件中,若m<0,直线AB的斜率为1,求△RAB面积的最大值.

查看答案和解析>>

同步练习册答案