精英家教网 > 高中数学 > 题目详情
7.对于集合A、B,“A≠B”是“A∩B?A∪B”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

分析 利用集合之间的关系及其运算性质即可得出.

解答 解:∵A∩B⊆A⊆A∪B,
∴A≠B”是“A∩B?A∪B”的充要条件,
故选:C.

点评 本题考查了集合之间的关系及其运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.过抛物线y2=2px(p>0)的焦点F且倾斜角为α的直线交抛物线于A、B两点,若S△ADF=4S△BOF,O为坐标原点,则sinα=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若点O和点F分别为椭圆3x2+4y2=12的中心和左焦点,点P为椭圆上任意一点,则$\overrightarrow{OP}•\overrightarrow{FP}$最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于无穷数列{Tn},若正整数n0,使得n≥n0(n∈N*)时,有Tn+1>Tn,则称{Tn}为“n0~不减数列”.
(1)设s,t为正整数,且s>t,甲:{xn}为“s~不减数列”,乙:{xn}为“t~不减数列”.
试判断命题:“甲是乙的充分条件”的真假,并说明理由;
(2)已知函数y=f(x)与函数y=-$\frac{1}{x}$+2的图象关于直线y=x对称,数列{an}满足a1=3,an+1=f(an)(n∈N*),如果{an}为“n0~不减数列”,试求n0的最小值;
(3)设yn=$\left\{\begin{array}{l}{f(\frac{4}{3}),(n=1)}\\{(\frac{1}{{2}^{n}}+1)cosnπ,(n≥2,n∈{N}^{*})}\end{array}\right.$,且xn-λyn=2n,是否存在实数λ使得{xn}为“$\frac{1}{2}$f(f($\frac{4}{3}$))~不减数列”?若存在,求出λ的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点$(0\;,\;\sqrt{2})$,且满足a+b=3$\sqrt{2}$.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 斜率为$\frac{1}{2}$的直线交椭圆C于两个不同点A,B,点M的坐标为(2,1),设直线MA与MB的斜率分别为k1,k2
①若直线过椭圆C的左顶点,求此时k1,k2的值;
②试探究k1+k2是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.当x,y满足条件$\left\{\begin{array}{l}{x≥y}\\{y≥0}\\{2x+y-3≥0}\end{array}\right.$时,目标函数z=x+3y的最小值是(  )
A.0B.1.5C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=x3+$\frac{3}{2}$x2-6x+c,若x∈[0,2]都有f(x)>2c-$\frac{1}{2}$恒成立,则c的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设P1和P2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$上的两点,线段P1P2的中点为M,直线P1P2不经过坐标原点O.
(1)若直线P1P2和直线OM的斜率都存在且分别为k1和k2,求证:k1k2=$\frac{b^2}{a^2}$;
(2)若双曲线的焦点分别为${F_1}(-\sqrt{3},0)$、${F_2}(\sqrt{3},0)$,点P1的坐标为(2,1),直线OM的斜率为$\frac{3}{2}$,求由四点P1、F1、P2、F2所围成四边形P1F1P2F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$若log_a^{\;}\frac{2}{3}<1,(a>0且a≠1)$,则a的取值范围是(  )
A.($\frac{2}{3}$,1)B.(0,$\frac{2}{3}$)∪(1,+∞)C.(1,+∞)D.(0,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)

查看答案和解析>>

同步练习册答案