精英家教网 > 高中数学 > 题目详情

已知:f(x)=x2-x+m(m∈R)且f(log2a)=m,log2f(a)=2,a≠1
(1)求:f(log2x)的最小值及对应的x值;(2)求:不等式f(log2x)>f(1)的解.

解:(1)∵f(log2a)=m,
∴f(log2a)=log22a-log2a+m=m
∴log2a=1或log2a=0,即a=2或a=1(舍)
∵a=2,∴f(a)=f(2)=2+m
∴log2f(a)=log2(2+m)=2,
∴m=2
∴f(x)=x2-x+2
∴f(log2x)=log22x-log2x+2
∴当log2x=,即x=时,f(log2x)取最小值
(2)由(1)知:f(log2x)>f(1)即为:log22x-log2x+2>2
则有log2x>1或log2x<0,
∴x>2或0<x<1
分析:(1)由已知中f(x)=x2-x+m(m∈R)且f(log2a)=m,log2f(a)=2,a≠1,我们易求出满足条件的a,m值,进而得到f(log2x)解析式,结合复合函数、指数函数、二次函数的性质,即可求出f(log2x)的最小值及对应的x值;
(2)由(1)的中f(log2x)解析式,我们易将f(log2x)>f(1)化为:log22x-log2x+2>2,解对数不等式,即可得到答案.
点评:本题考查的知识点是函数的最值及其求法,对数函数的单调性与特殊点,对于此类问题,将log2x看成一个整体,利用二次函数的性质进行解答是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,g(x)=x-a
x

(1)若a∈R,求函数f(x)的极值;
(2)若函数f(x)在(1,2)上是增函数,g(x)在(0,1)上为减函数,求f(x),g(x)的表达式;
(3)对于(2)中的f(x),g(x),求证:当x>0时,方程f(x)=g(x)+2有唯-解.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宜春一模)已知方程f(x)=x2+ax+2b的两根分别在(0,1),(1,2)内,则f(3)的取值范围(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•松江区三模)已知函数f(x)=x2+3x,数列{an}的前n项和为Sn,且对一切正整数n,点Pn(n,Sn)都在函数f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差数列{bn}的任一项bn∈A∩B,其中b1是A∩B中最的小数,且88<b8<93,求{bn}的通项公式;
(3)设数列{cn}满足cn=
nan-1
,是否存在正整数p,q(1<p<q),使得c1,cp,cq成等比数列?若存在,求出所有的p,q的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•贵阳二模)已知函数f(x)=
-x2+1   ,x<1
log2x   ,x≥1
,若f(a)=1,则a=
0或2
0或2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区一模)已知函数f(x)=x2+x,f'(x)为函数f(x)的导函数.
(Ⅰ)若数列{an}满足an+1=f'(an),且a1=1,求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=b,bn+1=f(bn).
(ⅰ)是否存在实数b,使得数列{bn}是等差数列?若存在,求出b的值;若不存在,请说明理由;
(ⅱ)若b>0,求证:
n
i=1
bi
bi+1
1
b

查看答案和解析>>

同步练习册答案