【题目】定义f″(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f″(x)=0有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.可以证明,任意三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”和对称中心,且“拐点”就是其对称中心,请你根据这一结论判断下列命题:
①存在有两个及两个以上对称中心的三次函数;
②函数f(x)=x3﹣3x2﹣3x+5的对称中心也是函数 的一个对称中心;
③存在三次函数h(x),方程h′(x)=0有实数解x0 , 且点(x0 , h(x0))为函数y=h(x)的对称中心;
④若函数 ,则 =﹣1007.5.
其中正确命题的序号为(把所有正确命题的序号都填上).
【答案】②③④
【解析】解:∵任何三次函数的二阶导数都是一次函数,∴任何三次函数只有一个对称中心,故①不正确;由f(x)=x3﹣3x2﹣3x+5,得f′(x)=3x2﹣6x﹣3,f″(x)=6x﹣6,由6x﹣6=0,得x=1,函数f(x)的对称中心为(1,0),
又由 ,得x=k,k∈Z,∴f(x)的对称中心是函数 的一个对称中心,故②正确;
∵任何三次函数都有对称中心,且“拐点”就是对称中心,
∴存在三次函数f′(x)=0有实数解x0 , 点(x0 , f(x0))为y=f(x)的对称中心,即③正确;
∵ ,
∴g′(x)=x2﹣x,g'(x)=2x﹣1,
令g'(x)=2x﹣1=0,得x= ,
∵g( )= ×( )3﹣ ×( )2﹣ =﹣ ,
∴函数 的对称中心是( ,﹣ ),
∴g(x)+g(1﹣x)=﹣1,
∴ =﹣1007.5,故④正确.
所以答案是:②③④.
【考点精析】掌握命题的真假判断与应用是解答本题的根本,需要知道两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆M过坐标原点O且圆心在曲线 上.
(1)若圆M分别与x轴、y轴交于点A、B(不同于原点O),求证:△AOB的面积为定值;
(2)设直线 与圆M 交于不同的两点C,D,且|OC|=|OD|,求圆M的方程;
(3)设直线 与(Ⅱ)中所求圆M交于点E、F,P为直线x=5上的动点,直线PE,PF与圆M的另一个交点分别为G,H,求证:直线GH过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项为1,前n项和Sn与an之间满足an= (n≥2,n∈N*)
(1)求证:数列{ }是等差数列;
(2)求数列{an}的通项公式;
(3)设存在正整数k,使(1+S1)(1+S1)…(1+Sn)≥k 对于一切n∈N*都成立,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn+an=4,n∈N* .
(1)求数列{an}的通项公式;
(2)已知cn=2n+3(n∈N*),记dn=cn+logCan(C>0且C≠1),是否存在这样的常数C,使得数列{dn}是常数列,若存在,求出C的值;若不存在,请说明理由.
(3)若数列{bn},对于任意的正整数n,均有b1an+b2an﹣1+b3an﹣2+…+bna1=( )n﹣ 成立,求证:数列{bn}是等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com