如图,从椭圆+=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP,|F1A|=+,求此椭圆方程.
热点分析 求出P点的坐标,利用kAB=kOP或利用两直角三角形相似及|F1A|=a+c建立两个关系,再结合a2=b2+c2可得解. 解答 ∵AB∥OP,∠BAO=∠POF1,PF1⊥x轴,∴Rt△ABO∽Rt△OPF1,得=, ∴yP=|F1P|=,而xP=-c代椭圆方程得yP=,由=,得b=c,∴a=c.而a+c=+,解得b=c=,∴a=,∴所求方程为+=1. 评析 求椭圆的方程,先判断焦点的位置,若焦点位置不确定则进行讨论,还要善于利用椭圆的定义和性质结合图形建立关系式. |
科目:高中数学 来源:海南省海南中学2010-2011学年高一下学期期末考试数学试题(1班) 题型:044
阅读下列材料,解决数学问题.
圆锥曲线具有非常漂亮的光学性质,被人们广泛地应用于各种设计之中,比如椭圆镜面用来制作电影放映机的聚光灯,抛物面用来制作探照灯等,它们的截面分别是椭圆和抛物线.双曲线也具有非常好的光学性质,从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发散的,它们好像是从另一个焦点射出的一样,如图所示.
反比例函数的图像是以直线y=x为轴,以坐标轴为渐近线的等轴双曲线,记作C.
(Ⅰ)求曲线C的离心率及焦点坐标;
(Ⅱ)如下图,从曲线C的焦点F处发出的光线经双曲线反射后得到的反射光线与入射光线垂直,求入射光线的方程.
查看答案和解析>>
科目:高中数学 来源:重庆市重庆八中2011届高三第七次月考数学理科试题 题型:022
如图,已知椭圆的左、右准线分别为l1,l2,且分别交x轴于C,D两点,从l1上一点A发出一条光线经过椭圆的左焦点F被x轴反射后与交于点B,若AF⊥BF,且∠ABD=75°,则椭圆的离心率等于________.
查看答案和解析>>
科目:高中数学 来源:2011年普通高等学校招生全国统一考试文科数学试题辽宁卷 题型:044
如图,已知椭圆C1的中心在圆点O,长轴左、右端点M、N在x轴上,椭圆C1的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C1交于两点,这四点按纵坐标从大到小依次为A、B、C、D.
(Ⅰ)设e=,求|BC|与|AD|的比值;
(Ⅱ)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
查看答案和解析>>
科目:高中数学 来源:2013年普通高等学校招生全国统一考试湖北卷文数 题型:044
如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D.记λ=,△BDM和△ABN的面积分别为S1和S2.
(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;
(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com