精英家教网 > 高中数学 > 题目详情

()(本小题满分12分)

三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响.

 (Ⅰ)求恰有二人破译出密码的概率;

(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.

(1) 恰好二人破译出密码的概率为. (2) 密码被破译的概率比密码未被破译的概率大.


解析:

解:记“第i个人破译出密码”为事件A1(i=1,2,3),依题意有

A1A2A3相互独立.

(Ⅰ)设“恰好二人破译出密码”为事件B,则有

BA1·A2··A1··A3+·A2·A3A1·A2·A1··A3·A2·A3

彼此互斥

于是P(B)=P(A1·A2·)+PA1··A3)+P·A2·A3

    =

    =.

答:恰好二人破译出密码的概率为.

(Ⅱ)设“密码被破译”为事件C,“密码未被破译”为事件D.

D··,且互相独立,则有

PD)=P)·P)·P)=.

PC)=1-PD)=,故PC)>PD).

答:密码被破译的概率比密码未被破译的概率大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知关于的一元二次函数  (Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为,求函数在区间[上是增函数的概率;(Ⅱ)设点()是区域内的随机点,求函数上是增函数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分) 一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.

(I)证明:平面⊥平面

(II)求二面角的余弦值.

查看答案和解析>>

同步练习册答案