若数列的前n项和为,则下列命题:
(1)若数列是递增数列,则数列也是递增数列;
(2)数列是递增数列的充要条件是数列的各项均为正数;
(3)若是等差数列(公差),则的充要条件是
(4)若是等比数列,则的充要条件是
其中,正确命题的个数是( )
A.0个 | B.1个 | C.2个 | D.3个 |
B
解析试题分析:数列{an}的前n项和为Sn,故 Sn =a1+a2+a3+…+an.若数列{an}是递增数列,则数列{Sn}不一定是递增数列,如当an<0 时,数列{Sn}是递减数列,故(1)不正确;由数列{Sn}是递增数列,不能推出数列{an}的各项均为正数,如数列:0,1,2,3,…,满足{Sn}是递增数列,但不满足数列{an}的各项均为正数,故(2)不正确;若{an}是等差数列(公差d≠0),则由S1•S2…Sk=0,不能推出a1•a2…ak=0,例如数列:-3,-1,1,3,满足S4=0,但 a1•a2•a3•a4≠0,故(3)不正确.若{an}是等比数列,则由S1•S2…Sk=0(k≥2,k∈N)可得数列的{an}公比为-1,故有an+an+1=0.由an+an+1=0可得数列的{an}公比为-1,可得S1•S2…Sk=0(k≥2,k∈N),故(4)正确.故选B.
考点:1.等比数列的性质;2. 等差数列的性质;3.充分必要条件.
科目:高中数学 来源: 题型:单选题
设数列{an},则有( )
A.若=4n,n∈N*,则{an}为等比数列 |
B.若anan+2=,n∈N*,则{an}为等比数列 |
C.若aman=2m+n,m,n∈N*,则{an}为等比数列 |
D.若anan+3=an+1an+2,n∈N*,则{an}为等比数列 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com