精英家教网 > 高中数学 > 题目详情
12.已知数列{an}的前n项和为Sn,且an+Sn=n
(1)设cn=an-1,求证:{cn}是等比数列;
(2)求数列{an}的通项公式.

分析 (1)通过an+Sn=n与an+1+Sn+1=n+1作差、整理可知an+1-1=$\frac{1}{2}$(an-1),进而可知数列{cn}是以-$\frac{1}{2}$为首项、$\frac{1}{2}$为公比的等比数列;
(2)通过(1)可知cn=an-1=-$\frac{1}{{2}^{n}}$,进而可知an=1-$\frac{1}{{2}^{n}}$.

解答 (1)证明:∵an+Sn=n,
∴an+1+Sn+1=n+1,
两式相减得:an+1-an+an+1=1,
整理得:an+1-1=$\frac{1}{2}$(an-1),
又∵cn=an-1,
∴cn+1=$\frac{1}{2}$cn
又∵a1+a1=1,即a1=$\frac{1}{2}$,
∴c1=a1-1=$\frac{1}{2}$-1=-$\frac{1}{2}$,
∴数列{cn}是以-$\frac{1}{2}$为首项、$\frac{1}{2}$为公比的等比数列;
(2)解:由(1)可知,cn=an-1=-$\frac{1}{2}$•$\frac{1}{{2}^{n-1}}$=-$\frac{1}{{2}^{n}}$,
∴an=1-$\frac{1}{{2}^{n}}$.

点评 本题考查数列的通项,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x2-ax+a2-12=0},B={x|x2-5x+6=0},是否存在实数a,使得集合A,B同时满足下列三个条件:①A≠B;②A∪B=B;③∅?(A∩B)?若存在,求出a的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数y=$\frac{2kx-8}{{k}^{2}{x}^{2}+3kx+1}$的定义域为R,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,角A,B,C的对边分别是a,b,c,且A=2B,则$\frac{sinB}{sin3B}$等于(  )
A.$\frac{a}{c}$B.$\frac{c}{b}$C.$\frac{b}{a}$D.$\frac{b}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:
估计这次环保知识竞赛的及格率(60分及以上为及格)是(  )
A.7.5%B.70%C.2.5%D.75%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:
(1)${C}_{3n}^{38-n}$+${C}_{n+21}^{3n}$的值;
(2)A${\;}_{1}^{1}$+2${A}_{2}^{2}$+3${A}_{3}^{3}$+…+n${A}_{n}^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出算法
第一步,输入n=5.
第二步,令i=1,S=1.
第三步,判断i≤n是否成立,若不成立,输出S,结束算法,若成立,执行下一步.
第四步,令S的值乘以i,仍用S表示,令i的值增加1,仍用i表示,返回第三步.
该算法的功能是计算并输出S=1×2×3×4×5的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}与{bn}满足下列关系:a1=2a,an+1=$\frac{1}{2}$(an+$\frac{{a}^{2}}{{a}_{n}}$),bn=$\frac{{a}_{n}+a}{{a}_{n}-a}$(n∈N*),其中a>0.
(1)求数列{bn}的通项公式,并证明:$\frac{{a}_{n}-a}{{a}_{n+1}-a}$=${3}^{{2}^{n-1}}$+1;
(2)设Sn是数列{an}的前n项和,当n≥2时,与(n+$\frac{4}{3}$)a是否有确定的大小关系?若有,请加以证明;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.现有翻译9人,其中4人只会英语,3人只会日语,2人既会英语又会日语,现从中选6人,安排3人翻译英语,3人翻译日语,则不同的安排方法有多少种?

查看答案和解析>>

同步练习册答案